Economics 1660: Big Data
PS 4: Prediction

Prof. Daniel Bjorkegren

In this problem set, we will work with loans in the Kiva loans dataset. Kiva is a crowd funding
platform for microfinance loans in developing countries. Visitors to the site can browse loan
requests and select borrowers to lend to. Requests for a loan include descriptions of the
borrowers, what they plan to do with the money, the full amount being requested, and so on.
Usually each request accumulates many lenders over time until it has been fully funded. You
can take a look at http://www.kiva.org/lend to get an idea of what lenders see when they

browse the site.

For this assignment, we will use trees to predict the time it takes for a loan to be fully funded by
lenders on Kiva: the difference between the posted date of a loan and the funded date of the

loan.

The data for this assignment can be found in the file loans_A_labeled.csv. Each line of the file
represents a loan that was fully funded on Kiva. The variables are as follows:

id A unique identifier for each loan

name The name of the borrower

gender The gender of the borrower (M/F)

pictured An indicator (0/1) for whether or not the borrower is present in a
picture that accompanies the loan description

description A description of the loan and the borrower, made available to

potential lenders on Kiva

loan_amount

The amount the borrower is requesting

activity The activity for which the loan will be used
sector Business sector of the activity

country The borrower’s country

town The borrower’s town

posted_date

The date on which the loan was first posted to Kiva

repayment_term

The number of months by which the borrower expects to have
repaid the loan

languages

A list of the languages in which the loan description is available.
Languages are represented as 2-letter codes (e.g. “en” for English)
followed by a vertical bar (“|”), which acts as a separator

days_until_funded

The number of days a loan takes to be fully funded after it is
initially posted on Kiva

Regression Trees

As we did in PS3, we will use trees for this prediction problem. An important difference to
notice, however, is that in this problem set we are dealing with a continuous variable

(days_until_funded), as opposed to the binary variable (edible) we were predicting in PS3. We
must therefore adjust our approach; we will move from classification trees to regression trees.

A regression tree looks like a classification tree, but with leaf nodes that can be equal to any
number—not just 0 or 1. Take the following one-level tree as a simple example:

gender

female male

5.5 6.0

If this were our tree, we would predict that days_until_funded is 5.5 for all female borrowers,
and 6.0 for all male borrowers.

The process of building a regression tree is different from building a classification tree in two
ways:
1. At each leaf, our predictions may be a number, not a binary classification
2. We may choose a loss function that considers not just whether a prediction is correct
but also how far it is from correct (here we’ll use mean-squared-error)

Your Task
You will use the stencil code PS4_stencil.py to make predictions on the variable
days_until_funded. There are 4 functions that you will need to fill in:

* partition_loss(subsets): Since we are building a regression tree as opposed to a
classification tree, we need to adjust our loss function from PS3. This function takes in
subsets, a list of lists of observations (tuples) where the first element in the tuple is the
feature dictionary, and the second is the value of days_until_funded. The function
should turn a value representing the weighted mean squared error of subsets. Take the
following example:

partition_loss([[({...}, 1), ({...}, 2), ({...}, 3)], [({...}, 5), ({...}, 9))]]

subsets has 2 subsets. The first with 3 observations and the second with 2.

We will compute the MSE of each of the subsets and return the weighted (by number of
observations) sum of the MSEs:

3[A-2)*+ (2-2)*+ (3—2)2]+§[(5—7)2+ 9 -7)]

5 3 5 2 =2

* build_tree(inputs, num_levels, split_candidates = None): This function is where we will
build the regression tree. You may use the same code you wrote here in PS3, but when
you get to the bottom level (leaf nodes) of your tree, return the average
days_until_funded value of all the observations in the data that reach that node.

* predict(tree, to_predict): This function should predict the days_until_funded value of
the given observation (to_predict) using the given tree. The code for this function may
be identical or almost identical to the code you wrote for the to_classify function in PS3.

* load_data(): Here you should read in the loans data from the loans_A_labeled.csv file.
Return the observations as a list of tuples (a, b), where 'a' is a dictionary of features and
'b" is the value of the days_until_funded variable. See the “Generating Features” section
below.

1. Generating Features
Explore the data to get a sense of what it contains. (On a Mac or Unix system you can do
this without loading the file into memory using the cat terminal command)

Consider: what information might be predictive? For example, are there keywords in the
description of a loan that might indicate a person’s reliability or chance of business success?
Might there be characteristics of loans that make them more attractive to potential
lenders? What other variables might have an effect on the length of time it takes to fund a
loan?

Create a set of numeric indicators or features from the dataset that can be used in a
regression model. For example, you could define ‘keywordCountPromptly’ as the number of
time the keyword ‘promptly’ appears in the project description. As another example, you
could create a variable ‘english’ as a dummy for whether or not the loan description is
available in English. Include these features in your feature dictionaries when you are
writing the load_data function.

2. Predictive Model
Create tree models that predict days_until_funded using features that exist in the data and
that you have generated. Think about which variables might be predictive, and which ones
might be best left out.

You may (and should) recycle some of your code from PS3 to build your models. You have
done much of the work already, but keep in mind a few aspects of this dataset that are
different from the mushrooms dataset:

* Most of the variables are not binary. In the mushrooms dataset, we dealt with
variables that had values of either 1 or 0. In this dataset, many of the variables are
continuous, e.g. loan_amount. It is up to you how you choose to handle this. One
strategy might be to create a dummy variable called high_loan_amount, which gets
set equal to 1 if the loan amount exceeds $1,000, and gets set equal to 0 otherwise.
It will certainly be helpful to explore the dataset before you begin building the tree.
You should try a variety of different strategies.

* Some of the variables are factor variables. Factor variables can take on many
different non-numeric values. One example is the location_country variable. One
strategy for dealing with this type of variable could be to create dummy variables for
each possible “level” to indicate whether a loan was given to a certain country.
Keep in mind, however, that you will want your trees to be able to make predictions
on new loans that may be from countries that you did not encounter in the
“loans_A_labeled.csv” dataset. If you decide to include factor variables in your
models, make sure your trees can handle a values of the factor variables that it did
not encounter when it was built.

* One of the variables is a text project description. To generate features using the
description variable, you may want to create dummy variables to represent whether
a certain keyword is found in a loan’s description. The easiest way do this in Python
is to use in. If you have a string s, calling keyword in s will return True if the keyword
is in s and False otherwise.

Create at least 5 models using different combinations of prediction variables, different
numbers of levels on in the tree, and different strategies for handling non-binary variables.
Test each model on the dataset and compute the mean squared error between the
predicted values of days_until_funded and the actual values.

- For each model, write a few sentences describing the model (variables, levels, and
strategies you used), and record its mean squared error when tested on the dataset.

3. Turn in Predictions

Of the models you estimated, select which one you feel worked best (judging from the
accuracy rate). You will now use your model to make predictions on a new, unlabeled
dataset, “loans_B_unlabeled.csv”. This dataset is identical in format to loans_A.csv, but the
classification variable days_until_funded is omitted. Use your model to predict the value of
days_until_funded for each loan in loans_B_unlabeled.csv. Note that it may take a few
minutes for your code to run due to the size of loans_B_unlabeled.csv. Save your
predictions in the form of a CSV file. The first column should be the ID of the loan, and the
second column should be your prediction (either 0 or 1). In the header row, name the first
variable “ID”, and the second variable days_until_funded followed by the first and last
initials of your group members. For example, Professor Bjorkegren and Simon
Freyaldenhoven’s group would turn in results of the form:

ID,days_until_funded_DB_SF
1,4
2,0
3,7

Save these as loans_B_predicted_[Group Initials Here].csv and turn this in on Canvas.

