
Public and Private Transit:
Evidence from Lagos

Daniel Björkegren, Alice Duhaut, Geetika Nagpal, Nick Tsivanidis

February 2025

Private minibuses dominate transport in many developing country cities. They serve 62% of trips
in Lagos, the largest city in sub-Saharan Africa. We collect panel data to measure how private
minibuses respond to the rollout of a new public bus network. When the government enters
a route, minibuses depart less frequently, driver profits fall, and drivers switch to connected
routes, reducing prices. We develop a custom app to estimate how commuters trade off prices
and wait times in an RCT. The private response harms commuters on treated routes, who wait
longer, but benefits those on connected routes, who face only lower prices. Overall, 10% of the
commuter welfare gains of building the public transit system arise from the response of private
transit. Drivers lose welfare equal to half of the commuter gains.

Björkegren: Columbia University, dan@bjorkegren.com. Duhaut: World Bank, aduhaut@worldbank.org. Nagpal:
World Bank, gnagpal@worldbank.org. Tsivanidis: UC Berkeley, ntsivanidis@berkeley.edu. We thank many colleagues
and seminar participants for helpful comments and discussions, and many research assistants for excellent work.
This work would not have been possible without the tireless work of field managers Nura Sambo Umar and Segun
Adebamiji. This paper is a product of the staff of the International Bank for Reconstruction and Development/the
World Bank. The findings, interpretations, and conclusions expressed do not necessarily reflect the views of the
World Bank, the Executive Directors of the World Bank or the governments they represent. The World Bank does not
guarantee the accuracy of the data included in this work. This work was supported by the World Bank’s Research
Support Budget, the World Bank Knowledge for Change Programme, the European Union’s Directorate-General for
International Partnerships (DG INTPA) and the UK International Development from the UK government under the
World Bank’s Umbrella Facility for Impact Evaluation, the Clausen Center at UC Berkeley, IGC, J-PAL King Climate
Action Initiative, the Brown University Seed Fund, the Weiss Fund, and STEG. The experimental portion of this
project was preregistered in the AEA RCT registry (AEARCTR-0010283).



1. Introduction

Developing country cities are growing rapidly, and their governments are making large in-
vestments in mass public transit systems.1 But in these contexts, transit services are already
provided by the private sector—typically by a decentralized network of private minibuses.
Standard approaches to evaluating the impacts of public transit infrastructure consider public
transit in isolation, such as time it saves (Small and Verhoef 2007) or how it changes accessibility
(Tsivanidis 2023; Zárate 2024). But public systems are unlikely to completely displace private
systems anytime soon, given the scale of these cities and the cost of building infrastructure.2

Public entry is thus likely to have important indirect impacts; for example, it may crowd out
the supply of private transit, leading to longer wait times for travelers, or intensify competition,
driving down private prices.

We consider this interaction in sub-Saharan Africa’s largest city, Lagos. Before our study
period, most of Lagos’s 22 million residents relied on private minibuses, known as danfo, for
transportation. In the late 2010s, as part of a modernization plan, the government launched the
Bus Reform Initiative (BRI) to establish a new public bus network. The system overall opened
64 new routes served by 820 buses that were larger and more modern than the incumbent
minibuses.3 The policy aimed to provide higher-quality service, attract potential car users, and
integrate with future rail services as part of a long-term intermodal transportation network.

This paper examines the private sector response to public entry, and its implications for
commuters and minibus drivers in four steps. First, we collect new data during the staggered
rollout of 13 of the new public transit routes that opened during our sample period. Second, we
estimate how this public entry affected prices and departure frequencies in the private market.
Third, we estimate how these changes are valued through a field experiment measuring how
commuters value time. And finally, we quantify the distributional impacts of public entry using
a sufficient statistics approach based on a queuing model of private transit.

Our first step confronts the fact that there is little data with which to estimate the impacts
of infrastructure investments in low income cities. In our setting, the public transit system can
be measured by smartcard swipes when each commuter boards a bus. However, no up-to-date
data on the private minibus market existed prior to the study. The government lacked even an
accurate map of routes, let alone information on market characteristics over time. We therefore
conduct a large-scale data collection effort. We hired enumerators to document the locations of
minibus routes by discovering and riding 759 routes throughout the city, traveling nearly 30,000
km. We stationed enumerators at the start of 278 routes across 13 survey rounds to measure

160% of World Bank spending within cities is on transport projects (The World Bank (2025a), The World Bank
(2025b)).

2For example, even Dar-es-Salaam’s celebrated BRT system accounts for only 1.3% of trips: around 60% are still
taken by private minibuses.

3Most routes operate on regular roadways and offer similar in-vehicle travel times to minibuses but differ in wait
times, fares, and other amenities.
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fares, bus queues and bus departures over a 15 month period. We capture these on treated routes
(sharing both endpoints with a new public route), connected routes (sharing one endpoint),
and control routes (sharing neither endpoint). We additionally conducted a panel survey of
854 minibus drivers across 5 survey rounds. Due to changes in government opening plans, we
captured data on 13 of 35 routes that opened in our sample period. These reveal several facts
about this underdocumented system: minibuses depart frequently (every 8 minutes on average),
buses are in excess supply (91% of routes have a bus waiting in its queue, with an average
of 4.8 buses waiting) and leave when full so that departures are determined by how quickly
passengers arrive and load minibuses, and drivers switch routes frequently (59% of drivers
change routes over a year, mostly within the same terminal).

The second step of the paper estimates how the private market responds to public entry by
comparing outcomes on routes as their service status changes. When the government enters
a route, minibuses departure frequencies fall by 22%, and there is suggestive evidence that
prices fall, by 5-10%.4 There is no change in congestion, which is not surprising, as the new
buses use the same roads as minibuses. When a driver’s route is treated, he or she makes fewer
trips and earns less revenue, and is more likely to switch to other routes at the same terminal.
Corroborating this, we find that the queue of minibuses waiting to fill with passengers decreases
when a route is treated.

These effects on treated routes are similar regardless of which of two research designs we
use. A within-terminal design compares changes as a route is treated to changes on connected
routes. This uses terminal-by-survey-round fixed effects that account for differences in trends
between the larger terminals where the government entered and smaller terminals without
public service. A spillover design instead compares how outcomes shift when a route is treated,
or receives a connection to a treated route, relative to control routes, but requires taking a stand
on the form of spillovers.

These latter spillover specifications provide more color on the nature of spillovers: when
a private route becomes connected to a new public route, it absorbs new minibus drivers,
increasing minibus queue lengths and decreasing prices. This suggests that government entry
indirectly reduces the profits of minibus drivers. We do not see corresponding spillover effects
on demand. The estimated spillover effects are relatively small, which is why they do not greatly
bias our within-terminal estimates, but because there are so many more connected routes, we
will find they are economically important in aggregate. Our specifications assume that treatment
affects only routes that share an endpoint connection; in a robustness test we show that our
results are not affected by overlap along the route itself.

We assess whether these effects could be due to confounds by measuring impacts on ‘placebo’
routes that were planned but never opened. Following a fatal police shooting at Lekki Tollgate,
groups of protesters burned a public television station and the Oyingbo public bus terminal in

4In our baseline within-terminal design, prices fall by about 5% (though not statistically significant), whereas in
our spillover specifications, prices drop by a statistically significant 10%.
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October 2020. This terminal had been slated to receive 8 new routes at the end of October and
late November, which were subsequently canceled. Our empirical strategy finds no phantom
effects on these routes, nor on routes whose opening was scrapped during changes in opening
plans across 22 variants of the rollout plan we digitized over our sample period.

Our results suggest that some commuters have to wait longer for minibus transit, and
may face lower prices. Our third step estimates how commuters value wait time and prices.
Recent approaches have used digital interactions with ride-sharing platforms to measure how
commuters trade-off time and price (e.g., Goldszmidt et al. 2020; Buchholz et al. 2022). However,
these applications—and even the smartphones they require—are not widely used in developing
countries. Data from smartphones can thus yield biased estimates of population parameters in
low income settings (Milusheva, Bjorkegren, and Viotti 2021). Moreover, users endogenously
select when to request a rideshare–if they request rideshare when in a hurry, approaches that do
not correct for this selection will yield biased estimates of the value of time.

We instead design a custom application to measure commuter values of price and time in
a randomized experiment that explicitly addresses potential selection bias from endogenous
participation. Over multiple weeks, enrolled commuters arriving at their local bus stop receive
random monetary offers to wait. We provide enumerators stationed at these stops during com-
muting hours a custom app that displays a new cryptographic code each minute. Participants
check in by texting the current code, then receive both a check-in payment and a random offer
to wait a specified number of minutes. To accept the offer, they wait and text the new code. To
reject, they continue on their way. Participants need only a basic phone. We recruit participants
at home on the weekends to aim for a representative sample, since people with high value
of time are likely to ignore a recruitment request at a bus stop. Commuters are less likely to
participate on days when they are rushed. We address this by modeling the two-stage decision
process for each day—first, whether to participate, and second, whether to accept an offer once
participating. To shift participation exogenously, we randomize the check-in payment across
individuals. Users with higher check-in offers are more likely to participate but conditional on
checking in are less likely to accept offers, consistent with selection based on the value of time.
By tracking which offers are accepted, we obtain a selection-corrected estimate of the disutility
of waiting of ₦18.94 per minute ($1.42 per hour). A naïve estimation strategy that does not
account for imperfect compliance undervalues the hassle of waiting by 56%. A stated preference
approach that asks participants at baseline to make hypothetical choices between transport
options—a common approach in the transportation literature—overvalues the value of time by
145%.

The final step of the paper uses a model to derive sufficient statistics that combine our
reduced-form estimates with structural parameters to measure changes in commuter and driver
surplus throughout the network. We develop a simple queuing model of private transit. In the
model, individuals arrive each period and choose among available transit modes. Drivers then
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select a route and join its bus queue. As passengers arrive, they fill the bus from the front of
the queue; the time each driver spends in the queue—and thus their expected number of daily
trips—depends on both the queue length and the passenger arrival rate. Prices and driver entry
costs are set by a drivers’ association that maximizes its revenue.

Using the sufficient statistics approach, we show that the private sector response matters for
understanding the aggregate and distributional effects of the public transit intervention. The
private response accounts for 10% of the total commuter surplus generated by public transit.
However, its benefits are unevenly distributed across the network: on treated routes, the private
response reduces benefits by 12% because commuters dislike the increased wait times more than
they value the reduction in fares. Yet on connected routes, commuters benefit from lower prices
without any change in wait times. Given the large number of commuters on connected routes,
the net effect of the private response is to increase the overall benefits of the public system.
Overall, the investment generates an additional $1.47 million in commuter surplus per month.

Failing to account for the private sector response also ignores the impact on drivers. We find
drivers lose an average of $2.98 per day, or around 25% of baseline surplus. These losses are the
same for drivers on treated and connected routes, because driver mobility equalizes expected
profits. In fact, route switching among drivers drives most of these losses, which total $0.75
million per month—about half the magnitude of the commuter surplus gains.

Our results suggest that when governments enter markets dominated by private incumbents
in interconnected network settings, they can have nuanced distributional effects. They suggest
the world’s fastest growing cities should carefully consider the interplay of public and private
transit when planning transit systems.

Related Literature. A body of previous work measures the impacts of transit reforms in
cities. Existing work focuses primarily on centralized public transit (Tsivanidis 2023; Kreindler
et al. 2023; Almagro et al. 2024), subways (Gibbons and Machin 2005; Glaeser, Kahn, and
Rappaport 2008), or roads (Baum-Snow 2007). However, much of the world’s population relies
on decentralized private transit. There are various case studies of these systems (Cervero and
Golub 2007), but few well-identified studies. An emerging literature has begun to investigate
various aspects of decentralized minibus systems. Mbonu and Eaglin (2024) analyses the impacts
of fragmentation between driver’s associations in Johannesburg. Kelley, Lane, and Schönholzer
(2021) introduces a monitoring technology to minibus owners in Kenya and finds that it improves
contracting with drivers. Conwell (2023) develops a model of matching between minibuses and
commuters, measures commuters’ value of waiting using stated preferences, and sets other
parameters with calibrations. We contribute to this literature by measuring the response of a
minibus network to the rollout of a new public network using a quasi-experiment, developing
a sufficient statistics approach to measure its welfare implications using a queuing model of
transit markets, and a randomized experiment to measure how commuters value price and wait
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time for transport options.5

Our paper is one of few that causally estimates commuters’ value of time in a developing
country setting. Recent work in this literature has used experiments to identify how travelers
trade off time and money. Kreindler (2023) conducts a field experiment that measures value of
time and scheduling for drivers in Bangalore. There is a large literature studying travelers value
of time in wealthier settings. As discussed above, a recent literature uses experiments to measure
value of time for rideshare apps in the US. Our contribution is to develop a methodology suitable
for low-income settings with basic phones to measure value of time for public transport users,
using an approach that accounts for endogenous participation.

The paper also relates to work on the impacts of public good provision in developing country
contexts where the good or service is already provided by private firms.6 Recent work focuses on
insurance (e.g. Mobarak and Rosenzweig (2013)) and education, where public sector investments
can crowd-in or crowd-out private schools in different contexts (Dinerstein, Neilson, and Otero
2020; Andrabi et al. 2023; Dinerstein and Smith 2021). We show a response by private sector
incumbents to government entry in the market for a different public good—mobility—and
measure the (indirect) surplus generated by this response.

2. Public Transit in Lagos

Previous to the period we study, the public transit system consistent of a single Bus Rapid Transit
(BRT) route and a handful of regular routes that phased in and out of existence. As of 2009, only
5% of trips in Lagos were by government public transit (Lagos Travel Survey, described below).

As part of a modernization plan, the Lagos state government developed a Bus Reform
Initiative to introduce a new public bus network. The network serves 64 routes, mapped in
Figure 1A. The routes were served by 820 new buses, most of which have a capacity of 70
passengers; a smaller number have a capacity of 30. These buses offer amenities such as air
conditioning. Users pay for service by tapping an electronic card on entry to the bus (a ‘Cowry’
card), which can be topped up at stations or online.

The Lagos Metropolitan Area Transport Authority (LAMATA) was responsible for supervis-
ing the rollout, which contracted out operations of the routes to four operators. In addition to
the bus routes, new terminal infrastructure was built at major interchanges. Our study focuses
on the large buses connecting these terminals on high demand axes. Most routes, and the routes
we study, are standard buses without dedicated lanes (shown in solid lines in Figure 1A). Public

5In studying decentralized transport, we also connect with a recent strand of work studying this in contexts such
as shipping and taxicab markets (Buchholz 2022; Brancaccio, Kalouptsidi, and Papageorgiou 2020; Fréchette, Lizzeri,
and Salz 2019). Also related is Roberts et al. (2024), which finds that requests for motorcycle ride hailing increases in
Jakarta around a recently opened mass transit line. An earlier, mostly theoretical literature considers how minibuses
might interact with public transit in wealthy cities (Walters 1982; Mohring 1983; Bly and Oldfield 1986).

6There is a long tradition of similar work in developed countries, such as Brown and Finkelstein (2008) in health
insurance.
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buses travel alongside existing traffic, and as a result have similar travel times. The plan did
include a handful of bus rapid transit routes with dedicated lanes (shown in dotted lines in
Figure 1A). Many passengers ride buses from the origin to the final terminal: 57% of boardings
are at the origin of the route.

Since 2019, a total of 64 routes have opened, with 35 launching during our sample period
(late 2020 to the end of 2021). Route opening plans changed frequently due to the COVID-19
pandemic and operational challenges. This includes some shocks; for example, one terminal
was burned during the EndSARS protests against police brutality in October 2020, resulting in
the cancellation of 8 routes scheduled to open that month. Consequently, we collected data on
only 13 routes that eventually opened, since we finalized our sample in September 2020.

The bus expansion we study was followed by two other expansions. One was a series of
‘First and Last Mile’ routes connecting terminals to nearby neighborhoods, operated by smaller
7-seater vehicles (some via narrow and muddy roads). A second was two rail lines connecting
Lagos Island to the west and north. The rail lines and most of the smaller routes opened after
our period of study.7

2.1. Data

We rely on two data sources to measure the public network.

Electronic Ticketing. We observe every tap in to the system with the associated fare, timestamp,
and origin (though not destination). From this data we derive passenger volumes.

Opening Plans. To track the changes in public rollout plans, we collected a sequence of 22
route opening plans from LAMATA at regular dates between March 2020 and December 2021.

3. Private Transit in Lagos

Like many other fast growing cities, the backdrop of transportation in Lagos is dominated by
private minibuses, which are locally called danfo (similar to matatus, or dala dalas). In 2009,
62% of motorized trips were via private minibus, as reported by the Lagos Travel Survey.

The minibus network is organized around major terminals (motorparks), a subset of which
are near public terminals. Although public buses run on existing routes, they serve different
stops—with public and private stops for the same origin or destination averaging 180m apart.8

Most drivers begin a journey by queueing at a terminal, to depart along a particular route.
Once the vehicles in the front of the queue have departed and a driver’s vehicle is next in line, it

7The rail lines opened September 2023 and September 2024, respectively.
8This is computed for 36 pairs of public and private stops, for which we were able to locate both stops on Google

Earth.
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may load passengers until full, at which point it may depart. The most common size of minibus
holds 14 passengers, although this can range from 7 to 22 passengers.9

The system tends to operate from terminal to terminal, and does not provide great service at
intermediate stops. Minibuses tend to leave their origin terminals full, so passengers may not be
able to board at intermediate stops.10

The industry is overseen by bus drivers’ associations, also known as unions. The National
Union of Road Transport Workers (NURTW) controls most terminals in Lagos; some are also
controlled by the Road Transport Employers’ Association of Nigeria (RTEAN).11 The government
grants these associations the authority to regulate the industry by setting fares and collecting
fees, ostensibly in exchange for organizing the sector, managing shared infrastructure, and
enforcing rules (CPCS 2024). In practice, however, these groups have evolved into complex
entities characterized by revenue extraction, political patronage, and street-level authority. A
small share of union revenue is remitted to the government, while most flows upward through
the association hierarchy.12 Drivers often perceive these fees as exploitative—often forced under
threat of violence—even though the unions are nominally established to protect their interests.
Indeed, over 70% of drivers view association dues as extortion, and critics argue that the NURTW
functions more as a “street bureaucracy” and a grassroots mobilization tool for political elites
than as a representative body for drivers (Fourchard 2023). Notable figures like MC Oluomo
and current president Bola Tinubu have been reported to use links with the associations for
political patronage and voter mobilization (Republic 2023). At bus stops outside terminals there
is less oversight, and drivers have more leeway on setting prices in response to factors such as
demand or weather.

3.1. Data

There are few existing statistics on this incumbent minibus network. Our main task is to collect
data to better understand Lagos’ private transit network—and how it responds to the expansion
in public transit.

Network Map. We commissioned a network mapping, which aimed to identify and georef-
erence every usual private transit route in the Lagos Metropolitan area. It was conducted by
a specialized firm, WhereIsMyTransport, during the winter of 2022 by sending enumerators

9For simplicity we refer to all private shared transit vehicles as minibuses, including larger size buses (locally
called molue) and smaller size vehicles (locally called korope).

10Data collected during our network mapping suggest 92% of passengers along minibus routes board at the origin
terminal.

11The Lagos chapters have recently been renamed to Lagos State Parks and Garages Management and Lagos State
Park and Garage Administration, respectively.

12In 2021, the NURTW was estimated to collect N123 billion annually in Lagos, yet local governments receive only
around N200 per park each day (ICIR Nigeria 2021).
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to identify and ride minibus routes while using a GPS tracker.13 A total of 759 routes, and
almost 30,000 km, were mapped. These represent a dense, comprehensive network spanning the
metropolitan area; we plot the routes discovered in Figure 1B.

Bus Stop Observations. We hired observers to count bus departures and passengers through-
out the network as the public system was rolled out, from October 2020 until December 2021.
Our team collected 13 rounds of data, spaced approximately every month. At terminals, enu-
merators collected data on departures, fares, and driver queues in half-hourly windows during
morning peak, midday offpeak, and afternoon peak times.14 Terminal observations covered 278
routes. We also collected similar data at 79 bus stops (where our enumerators could not identify
the exact route, since it is not always displayed on vehicles).

We focused data collection on routes that constituted part of the government’s long term bus
network plan. Around 85% of routes were selected from the Lagos State Government’s planned
future bus system. The remaining 15% were adjacent routes which our team was able to collect
data on while standing from a single position in a terminal.

We classify our sampled routes into three categories: treated routes that share both endpoints
with a public bus route that opened within our observation period, connected routes that share
one endpoint, and control routes that share neither endpoint.15 Among our 278 routes, 13 are
treated (representing 37% of all 35 routes receiving public transit during this period). However,
some of the untreated routes had originally been planned for opening during our period: 55 of
our sampled routes appeared in any deployment plans for 2020-2021, and 41 appeared in the
March 2020 deployment plan closest to opening.16

Figure 1C maps sampled routes according to these categories.17 Figure 2 shows the timing
of public route openings on our sampled routes, and the dates of our bus stop observations.
Routes that are not connected at endpoints may partially overlap on roads, but it tends to be
difficult to transfer at intermediate stops.

13For this mapping, a commuter route was defined as a route used by passengers to travel between home and
work on a daily basis, whereby a passenger can travel the full length of the route from origin to destination and back
within one day, with multiple trips available per day.

14Corresponding to 7-9 a.m., 1-2 p.m., and 4-6 p.m., respectively. Queue lengths and fare were recorded as of the
start of the observation window; departures were measured cumulatively over the window.

15We consider routes as opened if they served passengers for at least 3 months. While we only collect data on
a subset of treated routes, we use the full set of opened public routes to measure private routes’ public transit
connections.

16We had planned to begin data collection in February 2020, which was delayed due to the COVID-19 pandemic.
Analysis of Google mobility data (Figure S3) showed that travel patterns reverted to January 2020 levels by late July
2020, prompting the collection of baseline data in October 2020.

17For the 83% of sampled routes that we could match to our GIS data.
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FIGURE 1. Transit in Lagos

A. New Public Transit Network

BRT
Standard
Bus

B. Private Transit Network

C. Sampled Private Transit Routes

Note: The first panel shows the new public transit routes. Bus rapid transit (BRT) routes are shown with a dotted
line. The second panel shows the existing private transit routes, as discovered in our network mapping exercise.
The final panel shows the private transit routes we monitored for our study, including routes treated by public
transit, connected routes that share an endpoint with a public transit terminal, and control routes that do not share an
endpoint with public transit terminals. This final panel plots the 83% of sampled routes that we were able to match
to the GIS database of routes. Base layer color shows population density.
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FIGURE 2. Sampled Routes Served by Public Transit and Bus Stop Observations
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Note: Plots the number of routes served by public transit in our monitored sample. The timing of our bus stop
observations are shaded as vertical boxes.

Driver Surveys. We conducted a panel survey of 854 minibus drivers, starting with a baseline
survey and following up in four subsequent rounds. Drivers were sampled while waiting
in queues at terminals, and outside terminals, on treated, connected, and control routes. The
baseline survey was administered during recruitment, and drivers were asked for permission
to participate in follow-up surveys by phone. This sampling method is less likely to capture
drivers who often skip terminals (drive sole). We correct for this by asking the drivers who we
survey what fraction of the time they skip terminals, and use that to reweight the sample, as
described in Appendix S1.1. The reweighted sample includes 849 drivers, as 5 drivers (recruited
near terminals) had not worked in the past seven days and could not provide the information
needed to construct these weights.

Wait Time Experiment. We additionally ran an experiment on sensitivity to wait time for
minibus commuters which included its own data collection. It included a baseline survey at the
time of onboarding, daily interaction with an enumerator recorded via an app at bus stops, and
an endline survey. This data is described in more detail in Section 6.2.

Other Sources. We also use the Lagos Travel Survey—a representative 2009 survey of 12,274
individuals commissioned by LAMATA—and a dataset of live travel times collected from
Google Maps multiple times per day throughout the study period.
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3.2. Features of Private Transit in Lagos

Here we use our data to document several features of private transit in Lagos. We draw from
baseline driver statistics presented in Appendix Table S2, and additional statistics generated
from our baseline observation data.

Incentives to Adjust. Most drivers are residual claimants on fare payments they collect. On
the last day worked, the average net income was ₦5,140, net of fuel, payments to conductors,
fees paid at terminals, and any side payments. Fuel is a substantial expense: ₦3,766 on average
in the last day worked. 31% of drivers hired a conductor to collect fares and help passengers
board, paid an average of ₦2,531.

Margins of Adjustment. Drivers can change routes: 85% of drivers report that they choose the
routes they operate. However, switching terminals is costly: drivers must pay the association a
one time ₦15,494 on average to register to pick up passengers at a terminal. After paying that,
drivers pay an average of ₦691 per day in additional fees to the association. 87% of drivers drive
a single route, resulting in an average number of routes per driver close to one. As we discuss in
Section 5.2.3, route switching is fairly frequent: 59% of drivers change routes over the year we
monitor, with 86% of these changes coming within the same terminal.

It may be challenging for drivers to switch industries. The average driver surveyed has
driven minibuses in Lagos for 12.7 years. Some have sunk investments: 51% of drivers own their
buses; the remainder either rent or pay for their vehicle on installments (rent to own). Only 60%
of drivers have completed secondary education.

Excess Supply. In 91% of our terminal route observations, there was a minibus waiting for
passengers to load, and on average, 4.75 buses were waiting in queue. And in the baseline
driver survey, drivers report that 42% of working time is spent waiting in queues. That buses
are queuing for passengers is suggestive of excess entry. It also suggests that minibus departure
frequencies will mostly be determined by passenger arrival rates, and will tend to not be affected
by marginal changes in supply of minibuses, since almost buses (96%) wait until they are full
before departing.

Some drivers skip terminals and the queue to start driving along a route with an empty bus
(locally this is called driving ‘sole’); our survey suggests this constitutes a minority (21%) of
driver trips.

Challenging Job. Drivers complete 9.2 trips per day on average. Minibuses frequently break
down, with 92% of drivers reporting a repair in the last month. Also in the last month, 83% of
drivers report paying a fine, commonly for being caught driving without proof of paying the
terminal fee (sole), or parking/picking up/dropping off in an inappropriate location. The work
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entails conflict: 48% of drivers report having disputes with passengers weekly, and 37% report
having disputes with other drivers weekly, reported in Appendix Table S7.

Limited Expectations About Rollout. As of 2020, only 57% of drivers had heard about the
public transit rollout. Of those, 79% correctly predicted whether it would open on their route
(omitting those whose main route had already seen the introduction of public transit by the
time of the survey), although none correctly predicted the month of entry. 36% expected public
transit would reduce their passengers. See Appendix Table S8.

3.3. Comparison of Public and Private Service

We next compare public and private transit service. Table 1 compares characteristics of public
transit to private transit, before and after entry of public transit. We restrict the sample to routes
on which public transit entered. Statistics are reported for journeys beginning at a terminal.

Private Transit is More Frequent. The first pair of rows of Table 1 shows departure frequencies.
Private minibuses had frequent departures: before public entry, 3.8-4.5 minibuses passed per
half hour on average, and this declined slightly to 3.7-3.8 after entry. In contrast, we estimate
that after entry only 0.2-0.6 public buses passed per hour.18 Overall, the public buses constituted
6-14% of all departures. Because the two services serve different stops, commuters must decide
which type of bus to wait for–it would be difficult to monitor arrivals and hop on the first
departing bus.

Minibuses Fill Before Departing Terminals. The second pair of rows of Table 1 compares
passenger counts. Minibuses tend to fill up to near capacity before departure: 96% of minibuses
leave when full (most buses have 14 seats). In contrast, the public buses were not always full to
capacity, especially during the midday offpeak times.

Public and Private Fares are Similar. The next pair of rows of Table 1 compares fares for
traversing from the origin terminal to the route’s endpoint. On private buses, the fare is lower if
you get off at an earlier stop. For most public routes the fare is flat regardless of distance; only a
handful of public routes have distance based fares. Fares are the same on both systems during
peak periods, while public fares are slightly lower during off peak (₦212 vs ₦224). Fares across
the entire system rose over time in line with inflation in the country; we report the average
fare across all measured private transit routes in the final row which shows this overall trend.
Because of the difference in fare structure, minibus transit tends to be relatively more attractive

18Commuters seldom queue to board the minibus system; however, during the morning peak there may be queues
to board public buses.
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for shorter trips. Transfers are fairly common. However, there is no discount for transferring: on
both systems, one must pay the independent fare on each leg.

TABLE 1. Private vs. Public Service on the Same Route

Before Public Entry After Public Entry

Private Transit Public Transit Private Transit Public Transit

Departures per 30 min

Peak 4.47 - 3.78 0.62
(2.46) (2.70) (0.33)

Off peak 3.79 - 3.66 0.23
(1.93) (2.35) (0.19)

Passengers at Departure

Peak 13.63 - 12.94 25.66
(4.44) (5.61) (6.02)

Off peak 13.88 - 13.60 10.40
(4.74) (6.03) (5.33)

Fare (₦)

Peak 202.13 - 223.50 223.45
(74.92) (90.57) (110.40)

Off peak 199.47 - 223.96 211.95
(60.07) (72.86) (116.75)

Average fare across all routes (₦) 284.69 - 300.78

Notes: Table reports means across routes for a given time of day for routes that are eventually served by public transit. We
separately report means before and after public transit commences on the route. Standard deviations reported in parentheses.
Computed for the 9 (of 13) treated private transit routes in our sample that can be matched to public transit e-ticketing data. Peak
hours are defined as 7-9 a.m. and 4-6 p.m., and off-peak 1-2 p.m. Passengers counted upon departure from the origin terminal;
additional passengers may board at later stops. For private transit we compute the route average over all our terminal observations
before public transit began on that route, and after. For public transit, we compute the route average from e-ticketing data, using
only the time periods and months that coincide with our private transit route observations. We then compute the average across
routes, weighting routes based on the average volume of private transit passengers prior to rollout. For public transit, a bus
departure is defined using the last swipe at a route endpoint, which is not followed by another swipe at the same endpoint within
30 minutes. Passenger counts are aggregated at each departure, calculated as the total swipes for the same bus, route, and endpoint
up to and including the last swipe.

4. A Model of Hybrid Transit Markets

This section develops a model of transit markets. Its aim is to characterize how commuters and
incumbent minibus drivers are affected by government entry, and deliver a set of sufficient
statistics to measure the impacts on their surplus. The key addition relative to models of
decentralized transport (Brancaccio et al. 2023; Conwell 2023) is a model of queuing and route
choice of shared transit providers. Full details are provided in Online Appendix S3.1.
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Time is discrete and the horizon is infinite. There are I locations, i ∈ {1, . . . , I}. A pair of
locations ij is called a route.

4.1. Commuters

Each period, new commuters arrive at i intending to travel to j according to a Poisson process
with arrival rate µij . Commuters select a mode m ∈ M to travel the route, and exit the model
upon arrival at the destination. Prior to government entry, M = {M, 0} includes minibus (M )
and an outside option (0) capturing other modes such as walking or automobile. When the
government enters, treated routes face the additional option of public buses (P ; m ∈ M′ =

{M,P, 0}).19

The utility of commuter n traveling from i to j using mode m is given by

uijmn = uijm + ϵijmn (1)

where ϵijmn is a preference shock idiosyncratic to commuter n distributed type 1 extreme value
with scale parameter 1/θ. The fraction of commuters who choose mode m is therefore

sijm =
exp (θuijm)∑

m′∈M exp
(
θuijm′

) . (2)

Average utility of travelers on route ij is

Ūij =
1

θ
ln

( ∑
m′∈M

exp
(
θuijm′

))
. (3)

We are agnostic about the utility provided by public buses uijP , and normalize the mean
utility of the outside option uij0 = 0. To account for the changing utility provided by minibuses,
we explicitly model the dynamic process of waiting and traveling in Online Appendix S3.1.1.
This yields utility

uijM = αM − γpijM − ηtijM (4)

where αM is an amenity (such as comfort or safety) and pijM is the fare. Travel time tijM in
minutes is the sum of the waiting time t̄WijM and in-vehicle travel time tTij . While wait times are
equilibrium objects, we take travel times as exogenous for all modes since road speeds were
unaffected by government entry (see Section 5.2.1). In this setup, γ and η represent the price
and time sensitivity conditional on mode choice; θγ and θη represent the sensitivity when mode

19The primary other options are walking and cars with 9% and 12% of trips in the 2009 travel survey respectively.
We collapse these and the handful of other modes into the outside option since the payoffs to these are unlikely to be
affected by the reform: in Section 5.2.1 we show no effect on road speeds (which would affect payoffs for drivers).
Formally the set of modes varies by route, yet we abstract from this to economize on notation.
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choice is allowed for.

4.2. Supply

Minibus Drivers. Each period, Bi drivers enter terminal i. After entry, each chooses a route
ij to ply and joins that route’s queue. Minibuses in the queue fill on a first-in-first-out basis:
passengers load into the bus at the top of the queue. Once full with n̄ passengers, buses travel
to the destination, and probabilistically either return to queue ij, or exit the model.20 Each
commuter pays a fare of pijM , which drivers take as given, and the bus incurs a travel cost of cij .

Drivers have idiosyncratic productivities on different routes. If driver φ enters route ij, they
obtains expected profit νijφ · V Q

ij , where νijφ is a shock distributed Fréchet with shape parameter
σ and V Q

ij is the expected common value. The dynamic model suggests this common value is
the expected number of trips times the profit per trip,

V Q
ij =

T

tQij + tTij︸ ︷︷ ︸
N

Trips
ij

× [pijM n̄− cij ]︸ ︷︷ ︸
πij

. (5)

where tQij is minutes spent in queue, and T is the minutes in the day. Queue times are the key
margin through which drivers steal business from each other: the more drivers enter a route, the
longer each will have to queue, lowering the number of trips each driver can complete and their
resulting profits.

The proportion of drivers at terminal i choosing route ij is

ρij =

(
V Q
ij

)σ
∑

k

(
V Q
ik

)σ =

(
N

Trips
ij × [pijM n̄− cij ]

)σ
∑

k

(
N

Trips
ik × [pikM n̄− cik]

)σ . (6)

Properties of the Fréchet distribution imply that average profits of each driver at terminal i are
equalized across routes, and given by

Πi = Γ

(
σ − 1

σ

)[∑
k

(
N

Trips
ik × [pikM n̄− cik]

)σ]1/σ
︸ ︷︷ ︸

ΠV
i

−Fi (7)

where ΠV
i are average variable profits, Γ(·) is the gamma function, and Fi is the registration

fee charged by the association. We assume that the number of entrants, Bi, is determined by
free entry to capture a long-run equilibrium; however, the model can also accommodate a fixed
number of entrants (see below).

20We abstract from the return leg of trips. We assume drivers make the route choice decision only at entry since
87% of drivers drive from an origin to a destination and back again in our driver survey.
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Minibus Association. The minibus association chooses the price pijM on each route and
registration fee Fi at each terminal to maximize aggregate variable driver profits, BiΠ

V
i , which

the association is able to capture through registration fees.

Public Buses. Public buses charge a price pijP which is taken to be exogenous. But in contrast
to minibuses, public buses leave on an exogenous schedule regardless of passenger arrivals.

4.3. Minibus Equilibrium and the Effects of Public Entry

An equilibrium reconciles the choices of commuters, drivers, and the association, and implies
steady state conditions on queues and waiting times. Government entry affects equilibrium by
lowering the market share of minibuses, sijM . Here we summarize equilibrium waits and queues,
and discuss how outcomes change when sijM declines.21 Because minibuses pool passengers
and depart dynamically rather than on a fixed schedule, departures (and wait times) depend on
the arrival rates of both buses and passengers.

Commuter Wait Times. With probability βij =
λij n̄

sijMµij
there is a bus on the queue when a

commuter arrives. This is increasing in the arrival rate of buses λij into the queue and decreasing
in the arrival rate of minibus passengers sijMµij , as this increases the rate of departures from
the queue.

Commuters face expected wait times of

t̄Wij = βij
1

sijMµij

( n̄
2
− 1
)

︸ ︷︷ ︸
tFij

+(1− βij)
1

λij︸︷︷︸
tWij

If there is a bus waiting on the queue, the commuter waits the tFijM = 1
sijMµij

(
n̄
2 − 1

)
minutes it

takes for the bus to fill with the remaining n̄
2 − 1 passengers (each bus is half full in expectation).

If there is no bus on the queue the passenger expects waits tWijm = 1/λij for the next one to
arrive.22

When the minibus market share sijM declines, waiting buses take longer to fill as passengers
arrive more slowly. The impact on expected commuter wait times is ambiguous in general.
However, in our baseline data, minibuses were waiting in the queue in 96% of treated route
observations. In the limit where there is always a bus waiting (βij → 1), commuter wait times

21Precise comparative statics are not possible given the many interactions in the model. Appendix Section S3.2.7
presents the large system of equations that must be solved simultaneously to assess the impact of reduced minibus
demand caused by the new public option. Rather than offering clear qualitative predictions, the objective of the
model is to deliver a quantitative framework for welfare analysis.

22In steady state, there will be at least n̄ passengers waiting by the time this bus arrives, so it will immediately fill
and depart.
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increase, because they do not depend on bus arrival times: commuters wait only for other
commuters to fill the bus so it can depart.

Minibus Queue Times and Route Choices. When entering a queue with NQ
ij buses, a driver

will wait for all buses ahead of them plus the bus itself to depart:

tQij =
n̄

sijMµij

( 1
µijsijM
λij n̄

− 1
+ 1
)
=

n̄

sijMµij
(NQ

ij + 1) (8)

When the minibus market share falls, buses take longer to fill. However, some drivers may
cease to serve the route, reducing the number of buses in the queue in equilibrium, NQ

ij . If the
former effect dominates, queue times will rise and we would expect to see drivers on the route
making fewer trips in a day.

If minibus queue times rise on routes the government enters, then fewer trips per day reduce
the profitability of the route. According to the route choice probabilities in (6), drivers will switch
away from route ij, decreasing ρij and increasing ρik for connected routes. This shift increases
the number of drivers on connected routes ik, which, in turn, reduces the number of daily trips
per driver on those routes due to longer queue times.

Minibus Fares. When associations set prices, they trade off that higher prices raise driver
profits but also depress demand. This leads to an optimal markup

pijM − cij/n̄ =
1

tQij

tQij+tTij

(
Bij

Bi

)−1/σ
[∣∣∣∣∣∂ ln sijM∂pij

∣∣∣∣∣+ NQ
ij

1 +NQ
ij

∂ lnNQ
ij

∂pij

]
︸ ︷︷ ︸

∂ ln t
Q
ij

∂pij

. (9)

The cost of higher prices to drivers is longer queue times. As shown in equation (8), queue
times are influenced directly by demand (the first term in ∂ ln tQij/∂pij) and indirectly through
equilibrium effects on queue length (the second term). As the share of minibus users decreases,
demand becomes more (semi-)elastic through |∂ ln sijM/∂pij | = γ(1− sijM ), due to the greater
variety of options available to commuters. While there is no parameter restriction that determines
the overall sign of the queue time semi-elasticity, if the direct effect dominates, minibus prices
would decline on routes where the public system enters. The association also internalizes
that changing prices affects the average productivity of drivers through the selection term
(Bij/Bi)

−1/σ. This price setting equation holds under both free and fixed entry.
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4.4. Changes in Surplus from New Government Transit

The model provides a set of sufficient statistics that easily map empirical elasticities into changes
in commuter and minibus driver surplus. We also show in Online Appendix S3.2.7 how the
model can be use to conduct counterfactual analysis in general equilibrium.

Change in Consumer Surplus. Entry of public bus mode P on route ij that expands the set of
transit modes to M′ = {M,P, 0} changes consumer surplus by

∆CSij =
µij
γθ

ln

(
1

1− s′ijP

)
(10)

+
µij
γθ

ln (sij0 + sijM exp (−θη∆tijM − θγ∆pijM )) ,

The first line represents the direct change from accessing a new mode of transport, based on its
market share of trips in the post-entry period (as in love-of-variety models; Feenstra 1994). The
second line accounts for the fact that those who continue to use the private mode are indirectly
affected if its attributes change (trip times and prices). Both are scaled by the elasticity θ that
controls how easily commuters substitute between alternative modes.23 The total change in
consumer surplus ∆CS =

∑
ij ∆CSij simply aggregates this across routes.

Change in Producer Surplus. Defining x̂ ≡ x′/x as the relative change in a variable between
pre- and post-government entry equilibria, the change in variable profits is

Π̂V
i =

∑
j

ρij

(
N̂

Trips
ij

)σ [
p̂ijMπ

rev
ij + 1− πrevij

]σ1/σ

(11)

where πrevijM = pijM n̄/(pijM n̄ − cij) is the ratio of gross to net revenues. The change in driver
surplus depends on two forces. First, government entry can directly affect profitability for
drivers on the routes it enters by influencing prices and reducing the number of daily trips
drivers can make due to longer queue times. Second, public transit entry may indirectly affect
untreated routes at i if drivers switch from treated to untreated routes, leading to longer queue
times (and fewer daily trips) and potentially affecting prices too.

The change in aggregate producer surplus is given by ∆Π =
∑

iBiΠ
V
i (Π̂

V
i − 1). How this

surplus is shared between drivers and the association depends on whether minibus entry and
association fees change after government entry. We assume free entry initially to capture long-
run equilibrium; if this persisted post-entry, the surplus would go to the association. However,

23See Appendix Section S3.2.6 for a derivation. This model omits demand-side linkages across markets: while
government entry on one route could affect minibus demand on connected routes, we find no evidence of this in
Section 5.3. Equation (10) still accounts for changes in consumer surplus that flow through supply-side linkages, for
instance if prices change routes connected to treated routes in response to expanded supply.
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our data show no significant changes in driver exit or association fees during the sample period.
We interpret this as a medium-run response, and under these conditions ∆Π accrues to drivers.
Thus, we refer to this change as driver surplus, noting that under different assumptions, it could
be shared with the association.

Empirics. The sufficient statistics in equations (10) and (11) can be computed with three
categories of empirical objects. First, descriptive statistics: traveller arrival rates (µij),pre-entry
minibus market share (sijM ), post-entry public bus market share (s′ijP ), pre-entry route choices
of minibus drivers (Bi and ρij) and driver profit margins (πrevij ). These are obtained from the
data we describe in Sections 2.1 and 3.1. Second, elasticities: how government entry affected
commuter wait times (∆tijM ), fares (∆pijM and p̂ijM ), and driver trips (N̂Trips

ij ). We estimate
these exploiting the staggered government entry in the following section. Third, commuter and
driver preference parameters (θ, γ, η, and σ). We identify these using the response of driver
route choices to government entry, as well as the response of commuter trips to abrupt price
changes on the public system and a wait time field experiment as described in Section 6.

5. How Private Transit Responds to Public Rollout

This section uses the panel data we collected on minibus supply to measure how incumbents
responded to the opening of the new public system. We are primarily interested in impacts on
minibus departure frequencies (which determine wait times), prices, and driver queues. We will
also assess impacts on additional outcomes using our survey of drivers.

5.1. Descriptive Evidence

Figure 3 compares overall public transit ridership with that on our three categories of private
routes: treated routes that share both endpoints with a public bus route that opened within
our observation period, connected routes that share one endpoint, and control routes that share
neither endpoint.

In this sample of routes, three patterns are evident. First, public transit ridership (blue dot-
dashed line) increases over this period as it is rolled out over more routes. Second, private transit
ridership on those routes (treated: orange dashed line) sees a commensurate decline. Third, there
appears to be no meaningful trend on connected or control private transit routes. This suggests
that most of the impact of public transit on overall ridership appears to be local to treated routes,
and justifies a specification that identifies effects on treated routes by comparing them to other
private transit routes. We will more finely investigate impacts on connected routes at the end of
the section, and find some evidence of supply-side spillover effects. Finally, note that despite
the large investment in public transit, it remains a smaller share of trips than minibuses on the
routes we sampled.
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FIGURE 3. Trends in Trips

Note: Plots show the total passenger counts in private and public transit. Public transit ridership comes from electronic
ticketing data and covers the same 13 routes we observe in the private treated sample. Private transit ridership
comes from our terminal observations. Not all routes were monitored in all survey rounds: we impute missing route
observations with the average number of passengers in routes of the same group (public, private treated, private
control, or private connected) in that round. Vertical axis shown in logarithmic scale.

The three categories of private routes were similar at baseline, as shown in Appendix
Table S12. Treated routes had similar route distances and driver queue lengths to connected
and control routes, but were slightly higher volume routes (they had more frequent minibus
departures and passengers). Overall, we fail to reject tests of joint equality of these attributes
between treated and either connected or control routes. However, terminals that had at least one
treated route tend to be better connected and have higher passenger volumes than terminals
that have no public transit connections, as shown in Appendix Table S13. We reject a test of joint
equality between the characteristics of these two groups of terminals (F-stat 5.26).

Because the two groups of terminals are different, we will begin with specifications that
absorb differential trends at the terminal level, using terminal-by-survey-round fixed effects.
However, because this approach compares routes within terminals, it could be biased if untreated
routes within a terminal are affected, such as through driver substitution or other spillovers
(a violation of Stable Unit Treatment Value Assumption or SUTVA). In Section 5.3, we remove
these fixed effects and estimate specifications that account for spillovers of particular forms.
We find small supply-side spillovers between routes at a terminal but show that the estimated
effect on treated routes is similar whether we control for terminal trends or spillovers. Finally,
Section 5.3.4 provides evidence that possible higher-order spillovers beyond those modeled do
not appear to be at play in our setting.
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5.2. Impact on Treated Routes

We begin by estimating how minibuses respond to public transit entry on their routes, with
terminal-by-survey-round fixed effects.

Base Regression Specification. Outcomes are at the level of route r, survey round t, and time
of day τ (30 minute intervals within morning peak, afternoon peak, and afternoon off peak).
Our main estimating equation is

Yrtτ =βI{Openrt}+ γm(rτ) + δi(r)t + ηt
′Xrtτ + ϵrtτ . (12)

which includes an indicator for whether route r served by public buses as of survey round t as
well as a variety of controls including fixed effects and observable controls Xrtτ . The coefficient
of interest is β which represents the impact of public transit entry.

Commuting patterns in Lagos are highly asymmetric, with the same route varying signif-
icantly by time of day.24 We define a ‘transit market’ m(rτ) as a route segmented into three
periods: morning peak, afternoon peak, and afternoon off-peak. Transit market fixed effects
γm(rτ) are included to control for time-invariant unobservables and to identify β from changes
in outcomes driven by public entry. Control variables Xrtτ , which include day of week, hour of
departure fixed effects, and a set of fixed trip characteristics such as trip length, are interacted
with survey round fixed effects to allow their effects to be time-varying. Specifications in this
section include terminal-by-survey-round fixed effects δi(r)t, with i(r) representing the origin
terminal of route r. These will absorb time-varying shocks at the terminal level.25

Our identification strategy compares how private transit shifts when public transit serves its
route, relative to other routes. In our focal specifications, this comparison is made relative to
other routes sharing a terminal endpoint. This is because terminal-by-survey-round fixed effects
absorb terminal wide shocks. As a result, this relies primarily on comparisons between changes
in treated versus connected routes serving the same terminals. Standard errors are clustered by
route and terminal since treatment is at the route level but our sampling was at the terminal
level.

5.2.1. Departure Observations

We estimate the effect of public transit entry on outcomes observed in our departure observations
at terminals, with results shown in Table 2. We focus on log outcomes to lower impacts of outliers;

24Lagos’ patterns are typical: morning travel flows from the outskirts to the center, and the reverse in the afternoon.
25In theory one might also wish to include fixed effects for the destination terminal of route r, but empirically

that would absorb most of our variation. That is because we observe departures on sampled routes at each terminal:
we capture many routes with the same origin, but few with the same destination. The vast majority of our origin-
destination pairs are not treated (13 routes treated out of a sample of 278), largely alleviating the recently highlighted
issues when using yet-to-treated units as a comparison group (e.g., de Chaisemartin and D’Haultfoeuille 2022).
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results are similar in levels as shown in Appendix Table S15.
Introducing public buses on a route decreases the departure rate of minibuses by 11-22%,

as shown in Panel A. In the simplest specification in column (1), departures fall by 11% after
public entry. Since on each route there are typically minibuses waiting for passengers to depart,
these reductions reflect a decline in passengers. Because shared transport works by pooling
passengers, less frequent departures mean higher waits for those who continue to use minibuses,
as they will spend longer waiting in a bus as it fills to depart when full. This effect grows stronger
as we add controls. Column (2) adds the terminal of observation-by-survey round fixed effects,
allowing for aggregate shocks to locations, which sharpens up these effects. Column (3) adds
controls for trip distance interacted with survey round fixed effects (to allow for differential
trends by trip distance). Column (4) adds an indicator for whether the route was ever included in
one of the government’s opening plans for this phase of the system, again interacted with a time
indicator. Column (5) adds controls for whether a route ends in one of Lagos’ business districts.
Column (6) adds flexible controls for origin and destination characteristics through a 3rd order
polynomial in their longitude and latitude. Finally, column (7) adds origin and destination
region fixed effects interacted with time indicators. We define region by the local government
area (LGA), which partition Lagos into 20 administrative units. Overall, the estimate of largest
magnitude (22% decline in departures) comes from our most restrictive specification in column
(7).

Introducing public buses on a route has a suggestive negative effect on private fares, shown
in Panel B. Our point estimates suggest a reduction in fares between 2-7% across our various
specifications; these estimates are negative in all specifications but are not statistically significant.
Our confidence intervals can rule out declines larger than 15%.

Combined, the slower arrival of passengers and possible reductions in fares make treated
routes less desirable for drivers to serve. Correspondingly, we see declines in the number of
minibuses waiting in queues for passengers of 23-29% depending on specification, as shown in
Panel C. This suggests drivers on treated routes must be leaving those routes, which we will
turn to in the next section.

We treat column (7) as the preferred specification going forward since it includes the richest
set of controls.
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TABLE 2. Effect of Public Transit on Private Transit

(1) (2) (3) (4) (5) (6) (7)

Panel A: log(Departures)

Open -0.114*** -0.182*** -0.180*** -0.189*** -0.186*** -0.215*** -0.221***
(0.041) (0.037) (0.056) (0.057) (0.058) (0.078) (0.075)

N 21,284 21,284 21,284 21,284 21,284 21,284 21,284
R2 0.58 0.64 0.64 0.64 0.64 0.65 0.66

Panel B: log(Fare)

Open -0.031 -0.051 -0.037 -0.055 -0.059 -0.066 -0.024
(0.047) (0.050) (0.051) (0.049) (0.047) (0.040) (0.035)

N 23,067 23,067 23,067 23,067 23,067 23,067 23,067
R2 0.92 0.94 0.94 0.94 0.94 0.94 0.95

Panel C: log(Queues)

Open -0.228*** -0.282*** -0.266*** -0.270*** -0.254*** -0.277*** -0.289***
(0.062) (0.095) (0.078) (0.079) (0.086) (0.078) (0.072)

N 22,290 22,290 22,290 22,290 22,290 22,290 22,290
R2 0.47 0.55 0.56 0.56 0.56 0.58 0.59

Route X Period FE X X X X X X X
Day of Week X Survey Round FE X X X X X X X
Hour of Dep X Survey Round FE X X X X X X X
Terminal X Survey Round FE X X X X X X
Trip Dist Controls X Survey Round FE X X X X X
Dep. Plan X Survey Round FE X X X X
CBD Controls X Survey Round FE X
O & D Lat-Lon Poly X Survey Round FE X
O & D LGA X Survey Round FE X

Notes: The rows at the bottom of the tables reflect control variables added to each specification. Route X Period FE are the 3 "transit market"
fixed effects for each route. The remaining rows interact survey round fixed effects with the following variables. Rows 2 and 3 add fixed effects
for each day of the week and hour of departure. Row 4 adds a fixed effect for each origin terminal. Row 5 adds dummies for each quartile of
trip distance. Row 6 adds a dummy for whether the route ever appears in a LAMATA deployment plan, reflecting whether they planned to
open public transit on that route at some point. Row 7 adds dummies for whether the route ends on Lagos Island or Lagos Island, containing
the city’s two main central business districts. Row 8 adds a third-order polynomial in origin and destination latitude and longitude. Row 9
adds fixed effects for the LGA of each origin and destination. Standard errors clustered by route and terminal reported in parentheses. * p<0.1;
** p<0.05; *** p<0.01.

Placebo Tests. We conduct a falsification test by applying the same strategy to estimate effects
on two sets of planned routes that never became operational. Using the dates the government
planned to open these routes, we construct hypothetical Openrt dummies which turn on when
these routes were scheduled to be operational. If the main treatment effects are driven by public
entry itself, rather than pre-existing trends on targeted routes, these planned opening dummies
should have no impact on outcomes.

The EndSARS Protests and Fire at Oyingbo Terminal. The new Oyingbo terminal was slated
to open and host 8 new public bus routes starting in late October and early November 2020.
However, weeks before opening, a protest against police brutality swept Nigeria, illuminating
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abuses by a police unit called the Special Anti-Robbery Squad (SARS). Following a fatal police
shooting at Lekki Tollgate on October 20, groups of protesters burned a television station and
the Oyingbo public bus terminal (see Appendix Figure S4), which canceled the planned routes.

Evolving Opening Plans. The government’s rollout plans evolved over time. We digitized 22
versions of the rollout plans shared with us by the government over 2020 and 2021, allowing us
to observe routes that were planned to be opened during this period but were suspended or
delayed due to operational considerations.

TABLE 3. Placebo Tests

log(Departures) log(Fare) log(Queues)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Open -0.221*** -0.221*** -0.208*** -0.024 -0.024 -0.029 -0.289*** -0.289*** -0.282***
(0.075) (0.075) (0.078) (0.035) (0.035) (0.035) (0.072) (0.072) (0.075)

Open ENDSARS -0.012 0.185* 0.087
(0.149) (0.104) (0.164)

Open Cancelled 0.088 -0.036 0.044
(0.078) (0.022) (0.100)

N 21,284 21,284 21,284 23,067 23,067 23,067 22,290 22,290 22,290
R2 0.66 0.66 0.66 0.95 0.95 0.95 0.59 0.59 0.59

Notes: Specification is the same as column 7 of Table 2. Standard errors clustered by route and terminal reported in parentheses. * p<0.1;
** p<0.05; *** p<0.01.

Results. Table 3 shows the results. The first three columns report results for departures.
Column (1) repeats the baseline specification (column (7) in Table 2). Column (2) adds the
event-time indicator that turns on when a route at Oyingbo would have opened, had it not been
cancelled after the fire. Column (3) does the same for planned openings that were canceled due
to changes in government deployment plans. Columns (4-6) repeat these specifications for fares,
and columns (7-9) for queues.

We do not see evidence of effects after planned but canceled public transit entry. The effects
on departures and queues are both economically small and statistically insignificant. Over all
outcomes, four out of the 6 coefficients go in the opposite direction of the main effect on actually
opened routes. On fares the ENDSARS coefficient is statistically significant at the 10% level
but is in the opposite direction of the effect on actually opened routes. These results support
the notion that our main treatment effects are due to entry itself, and not differential trends on
routes the government planned to enter.

Robustness. Our estimates are also robust to a number of adjustments. Coefficients of the
baseline specification are similar whether estimated with a two-way fixed effects estimator or a
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Sun and Abraham (2021) estimator that is more robust to treatment effect heterogeneity, shown
in Appendix Table S14. Results are qualitatively similar when outcomes reported in levels rather
than logs, as shown in Appendix Table S15. Wild cluster bootstrap (Cameron, Gelbach, and
Miller 2008) may be more trustworthy in small samples, and suggests lower statistical precision
but still support declines in departures and queues with median p-value 0.06 for departures and
0.07 for queues (fare impacts remain imprecise). See Appendix Table S16.

Impacts on Congestion. We find no impact of public transit rollout on measures of traffic
congestion derived from Google Maps (log road speed and travel time), reported in Appendix Ta-
ble S17. This is not surprising given that the public buses we study share the roadways, and did
not pack passengers much more densely than minibuses on average (Table 1).

5.2.2. Departure Observations: Dynamics

To assess dynamics, we replace the binary treatment indicator with indicators for whether public
buses have been running for less than 3 months (associated coefficient β1), 3 to 6 months (β2), or
longer than 6 months (β3) on route r by survey round t. This results in estimating equation

Yrtτ =β1I{Openrt < 3 months}+ β2I{Openrt 3-6 months}+

β3I{Openrt > 6 months}+ γm(rτ) + δi(r)t + ηt
′Xrt + ϵrtτ . (13)

Results are shown in Appendix Table S3, repeating the specifications of Table 2. There is
evidence of a slight decline in departures within 3 months, which grows stronger and persists
after 3 months, as shown in Panel A. Fare effects are always negative but are imprecisely
measured and do not show a clear time trend, shown in Panel B. Queues decline much more
after 3 months, shown in Panel C. A delay between the adjustment of departures and queues
would be consistent with drivers adjusting to reduced passenger flows after a delay. We present
dynamic results visually in Appendix Figure S6, showing event studies for our main results
using both two-way fixed effects and Sun and Abraham (2021) estimates.

Taking stock, we find that on treated routes, departures decrease, and there is suggestive
evidence that fares decrease. Driver queues also shorten. This raises the question: where do
affected drivers go? We assess this in the next two subsections.

5.2.3. Drivers

We next turn to our panel of driver surveys to understand how individual drivers are affected
when public transit rolls out on their primary route.

Drivers are a challenging group to track down for follow up surveys: they are highly mobile,
do not have defined work locations, and work long and erratic hours around the week, with
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unpredictable breaks. We followed a protocol to call multiple times and arrange to call back at
convenient times. We recruited 854 drivers at baseline; 82% could be reached for at least one
follow up but only 34% could be reached for all 4 follow ups.26 Older drivers are more likely
to participate in follow up rounds, but we do not find differential attrition based on whether
the driver’s main route at baseline was treated, whether the driver owned their bus, or income.
We present these results in Appendix Table S11. Since only driver age appears correlated with
attrition we will control for it, although our results are not sensitive to this choice.

We return to the base regression specification, equation (12), and run it on outcomes from
the driver survey. We compare drivers whose main route, as reported in the baseline survey, has
the public service operating at the survey date (Openr(d)t = 1 for driver d) with those whose
main route does not. Results are shown in Table 4. Drivers whose baseline routes become served
by public transit complete fewer trips (column (1)) and earn less revenue (column (4)) compared
to other drivers operating from the same terminal at baseline. They do not report significant
differences in fares (column (2)) or the fee paid to the association for each trip (column (3)),
and do not work fewer days (column (5)).27 This reduction in the quantity of trips made aligns
with the terminal observation results. In response, drivers are more likely to change routes. On
average, 59% of drivers change routes over the year we monitor, and treatment results in an
increase of 7.2 percentage points (column (6)). The vast majority of these changes are drivers
selecting different routes from the same terminal (51% of all drivers, or 86% of all switchers):
column (7) reports a sharper 11.6 percentage point increase in the likelihood a driver switches
routes within the same terminal after the public service enters on their main route.

These findings support the main terminal-level results and suggest that changes in drivers’
route choices may have affected other routes serving the same terminal. We explore this possi-
bility next.

TABLE 4. Effect of Public Transit on Minibus Drivers

N Trips log(AvgFare) Log(Assoc Fee) log(Rev) log(DaysWork) Change Route Change Route

Any Same Terminal

(1) (2) (3) (4) (5) (6) (7)

Open -1.550*** -0.037 -0.039 -0.115** 0.003 0.072 0.116***
(0.503) (0.033) (0.055) (0.051) (0.038) (0.045) (0.038)

N 2,161 1,991 2,015 1,943 2,166 1,383 1,383
R2 0.76 0.87 0.78 0.76 0.53 0.83 0.79

Mean Outcome (Levels) 9.58 197.26 580.88 17474.65 4.41 0.59 0.51

Notes: All columns include driver fixed effects, and survey round fixed effects interacted with terminal of recruitment, dummies for each quartile of driver age, the
number of trips the driver reports in the previous workday at baseline, and a dummy for whether they own their vehicle or not at baseline. Number of trips
and revenue are winsorized at 99th percentile due to large outliers. Regressions are weighted by the sampling weights discussed in Section 3.1. Standard errors
clustered by driver and terminal of recruitment reported in parentheses. * p<0.1; ** p<0.05; *** p<0.01.

26Appendix Table S9 reports the number of completed surveys in each round, and Appendix Table S10 reports the
distribution of number of survey rounds completed.

27We only asked the per-trip payments to the association in all survey rounds; the terminal registration fee was
asked only in the baseline survey since it is paid infrequently.
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5.3. Impact on Connected Routes

We next test for the presence of spillover effects on private routes not directly exposed to public
sector competition. On routes where the government enters, departure frequencies fall and there
is some suggestion that prices fall. This suggests a reduction in driver profits, and increased
incentives to reallocate to alternative routes. Indeed we see driver queues on treated routes
shorten and drivers report switching to other routes within the same terminal. It is also possible
that connected routes experience a change in demand: more passengers might take private buses
to connect with public buses, or passengers who were previously connecting between private
routes may opt to change the mode of one of the legs.

To test for spillovers, we drop terminal-by-survey-round fixed effects and run regressions that
compare treated, connected, and control routes. Connected routes are more likely to experience
driver substitution, as the primary fee drivers pay the association is to serve a specific terminal,
making it cheaper to switch to a route with the same origin or destination.28 Conceptually, if
a new public route opens on ij, the effect of treatment is identified by comparing changes on
the treated route (ij) with those on untreated routes serving terminals with no public service
(control routes, for example, lm). The spillover effect is identified by comparing how untreated
routes change when their terminal receives new public service (connected routes, for example,
ik) with those on untreated routes at terminals without public service (e.g., lm).

5.3.1. Departure Observations

Our spillover specifications omit terminal-by-survey round fixed effects, and take the form

Yrtτ =βI{Openrt}+ α Connections to public transitrt + γm(rτ) + ηt
′Xrt + ϵrtτ .

where Connections to public transitrt describes route r’s connections to public transit. In our
main specifications this is the number of running public routes that share an endpoint with route
r; we consider alternative specifications of public transit connections in robustness checks. We
define these connection measures based on the max of the variable at the origin and destination,
and set them to zero if route r itself ever receives public transit. This ensures the connection
coefficients are estimated using variation in exposure on untreated routes rather than as treated
routes are connected to more public bus routes. The impact of treating route r on treated route r
is captured by β, and the impact on connected route r′ is captured by α.

Results are shown in Table 5. Odd columns replicate the main specification (column (7) of
Table 2), while even columns report the spillover specification which omit terminal-by-survey

28Drivers could experience lower switching costs within terminals for other reasons, such as familiarity, and reports
suggest that drivers are indeed "often tied to a single origin-destination (or sometimes a set of origin-destination),
which are connected to a corresponding park" (CPCS 2024). ‘Higher-order’ spillovers could also affect control
routes—for instance, if they interact with the public service at points along the route rather than at either endpoint.
We will revisit this possibility in Section 5.3.4.
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round fixed effects and add the connection measure.

TABLE 5. Effect of Public Transit on Connected Private Transit Routes

log(Departures) log(Fare) log(Queues)

(1) (2) (3) (4) (5) (6)

Open -0.221*** -0.163* -0.024 -0.108** -0.289*** -0.163*

(0.075) (0.090) (0.035) (0.052) (0.072) (0.093)

Number of open routes at terminal 0.002 -0.016*** 0.029*

(0.013) (0.006) (0.017)

N 21,284 21,284 23,067 23,067 22,290 22,290

R2 0.66 0.63 0.95 0.94 0.59 0.55

Terminal X Survey Round FE X X X

p-val: Same estimate on Open 0.59 0.05 0.30

Notes: All columns include the same controls as the main specification (column (7) of Table 2), except for terminal-by-survey
round fixed effects which are omitted in even columns. Number of open routes at a terminal is defined as the maximum of the
number of public routes open at a minibus routes origin and destination, and is non-zero only for routes that never receive public
service themselves. Final row shows the estimated p-value on a hypothesis test of equality between the coefficient on Open in
the corresponding odd and even columns. Standard errors clustered by route and terminal reported in parentheses.* p<0.1;
** p<0.05; *** p<0.01.

The first two columns test for demand-side spillovers: when buses are waiting in queues
(observed in 84% of spillover route observation windows at baseline), the departure rate of
buses depends on the passenger arrival rate. The results show a precise zero effect of a route
without new public service becoming connected to more public routes at either endpoint on
its bus departure rate. This indicates that the introduction of new public service does not affect
minibus passenger demand on untreated routes.

The last two columns test for supply side spillovers by examining the effects of new public
service on the length of driver queues on connected routes. As a route receives public transit,
driver queues on that route shorten but queues to drive connected routes increase as shown in
column (6). This is consistent with drivers substituting to serve other routes at the same terminal,
affecting the supply of buses there and the number of daily trips drivers can make.

The effect of public transit connections on minibus fares reflects the net impact of shifts in
supply and demand. With only the supply of drivers increasing, any observed price changes
are driven by the greater availability of drivers on these routes. Column (4) demonstrates that
minibus fares decline on routes with new public transit connections. According to equation (9),
the model predicts that prices will decrease if queue lengths become more sensitive to prices
as driver supply expands. While the total change in this elasticity is theoretically ambiguous
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(as detailed in Appendix Section S3.2.7), a negative relationship between prices and supply is
plausible since this elasticity scales linearly with the length of the driver queue. The effect of
public entry on minibus fares on treated routes also sharpens in this specification, with a 10%
reduction significant at the 5% level.

5.3.2. Drivers

Table 6 presents estimates of driver outcomes accounting for spillover effects. Results for treated
drivers remain consistent with the previous specification using terminal-by-survey round fixed
effects, so we focus on connected routes. We find suggestive evidence that drivers on connected
routes experience similar effects as treated drivers, but to a smaller extent, consistent with
second-order effects from the movement of drivers from treated to connected routes. Drivers on
connected routes are more likely to switch routes within the same terminal (column (7)) and
receive lower average fares across their daily trips (column (2)). While there is no significant effect
on the number of daily trips, multiplying the point estimate by the average of 5.1 open public
routes at terminals with public service implies an effect for connected drivers approximately
10% as large as for treated drivers.

TABLE 6. Effect of Public Transit on Connected Minibus Drivers

N Trips log(AvgFare) Log(Trip Fee) log(Rev) log(DaysWork) Change Route Change Route

Any Same Terminal

(1) (2) (3) (4) (5) (6) (7)

Open -1.319*** -0.064* -0.025 -0.145** -0.007 0.091** 0.169***
(0.478) (0.036) (0.053) (0.056) (0.036) (0.036) (0.047)

Number of routes open at terminal -0.028 -0.006* -0.002 -0.015 -0.005 0.006 0.020**
(0.083) (0.004) (0.008) (0.009) (0.004) (0.008) (0.008)

Mean Outcome (Levels) 9.58 197.26 580.88 17474.65 4.41 0.59 0.51

N 2,173 2,011 2,026 1,966 2,178 1,405 1,405

R2 0.71 0.84 0.72 0.69 0.41 0.80 0.76

Notes: All columns include driver fixed effects, and survey round fixed effects interacted with: dummies for each quartile of driver age, the number of trips the driver reports in
the previous workday at baseline, and a dummy for whether they own their vehicle or not at baseline. Open and Number of open routes are defined analogously to the terminal
observation specifications, but based on a driver’s main route from the baseline survey. Regressions are weighted by the sampling weights discussed in Section 3.1. Standard
errors clustered by driver and terminal of recruitment reported in parentheses.* p<0.1; ** p<0.05; *** p<0.01.

5.3.3. Robustness

Placebo Spillover Specifications. In Appendix Table S18 we repeat the placebo regressions,
finding that neither type of canceled route yields phantom effects in the spillover specification.

Alternative Spillover Specifications. Columns (2) and (3) of Appendix Table S19 present
specifications with alternative measures of connections to public transit. Column (2) uses two
dummies binning the number of open public transit connections (the baseline measure) into two
groups above and below 5 routes (the average number of open routes is 5.1), and column (3) uses

29



a dummy for whether the route has any public connections. The findings of supply side and fare
spillovers are robust to these alternative functional forms, with effects becoming larger on routes
with more new public transit connections. For departures, we see some mixed effects but not
convincing evidence of demand spillovers. Although there is a negative departure effect when a
route receives any connection in column (3), column (2) suggests that the effect is stronger at
terminals that are less affected, suggesting it may be picking up noise.

Alternative Driver Specifications. Appendix Table S20 runs an unweighted version of the
driver spillover specification, and a version replacing the continuous measure of transit connec-
tions with a dummy for whether a route has any connections. The results are generally similar to
the main specifications, although the spillover effects are larger when using a dummy to capture
public connections.

5.3.4. Discussion

Reconciling the Baseline and Spillover Estimates. We estimate two families of specifications
in the previous analysis. Since terminals with treated routes differ from those without, our first
specification includes terminal-by-survey round fixed effects to flexibly control for unobservable
terminal-level trends. The drawback is that treatment effects are identified through within-
terminal comparisons, which may be subject to spillovers. Our second specification compares
outcomes on routes at treated terminals (both treated and connected routes) with routes that do
not interact with the new public system at either endpoint. This reduces concerns about spillovers
but requires selecting a functional form, and sacrifices control over unobserved terminal-level
trends. Thus a key question is whether our conclusions are sensitive to the approach.

Appendix Table S19 presents three alternative functional forms for spillovers in columns
(1–3). For each, we reports p-values for whether the coefficient on Openrt differs from that in the
specification with terminal-by-survey round fixed effects in column (4). In only two of the nine
regressions do we reject equality at the 5% level—those where fare is the outcome. For queue
length, coefficients are smaller in two of the three spillover specifications but not significantly so.

Overall, our results remain consistent regardless of whether the specification accounts for
spillovers. This suggests that SUTVA violations are relatively minor in the terminal-by-survey-
round fixed effects specifications, aligning with the small point estimates on the number of
connected routes in Table 5. Small treatment effects on connected routes do not greatly influence
our estimation strategy, but could still be quantitatively important when aggregated across
many routes.

Higher Order Spillovers. The specifications from the previous section remain valid in the
presence of spillovers only if there are no ‘higher-order’ spillovers beyond interactions at origin
or destination terminals, as captured by our measure of connections. While most trips in Lagos

30



begin at route origins, some routes may interact with the public transit system at intermediate
stops beyond their origin or destination.29 Such interactions could violate SUTVA by exposing
control group routes to the treatment. In Appendix Section S4.1, we provide evidence that our
estimates are not substantially affected by higher-order spillovers.

Testing Profit Equalization Across Routes. Our theory predicts that after public entry, drivers
will reallocate between routes until expected profits are equalized. Appendix Section S3.2.8 tests
this formally. The combination of departure, queue length, and price impacts imply a reduction
of profits of approximately 0.376 log points on treated routes and 0.334 on connected routes,
which are statistically indistinguishable (p=0.78).

6. How Commuters Value Changes in Transit Attributes

Next we estimate how commuters value wait time and price changes. We use quasiexperimental
price variation in public buses to estimate how trips respond to prices. We use an RCT to estimate
how commuters value the changes in minibus prices and wait times.

6.1. Price Elasticity

We compute medium run price sensitivity from a sequence of abrupt price changes in the
public transit system, using an event study approach, in Appendix S1.2. We find a value of the
composite demand elasticity θγ = 0.0021. We separate the substitution elasticity θ by estimating
γ in the field experiment described below.

6.2. Wait Time Experiment

We estimate utility parameters using an experiment: we measure sensitivity to prices (γ) and
waiting (η) by providing commuters offers to wait for random times before boarding a minibus.
This experiment was preregistered in the AEA RCT registry (AEARCTR-0010283).30

Implementation. Our team developed a text message service which allows us to estimate
commuters’ value of time at minibus stops, and deployed it between June and August, 2023. We
sampled 18 bus stops, and in the surrounding areas recruited 640 commuters at their homes on
weekends.31 We informed them that on weekdays morning when they commute over the next
3-5 weeks, they will find an enumerator waiting at their registered bus stop. The enumerator

2992% of minibus passengers board at the origin (from our network mapping microdata), while 88% of public
passengers do so (based on electronic ticketing data).

30Deviations are detailed in Online Appendix S2.2.
31If we had alternately attempted to recruit at bus stops, it is likely that the only commuters who would be willing

to go through our intake process would be only those with low value of time.
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holds a phone or tablet, which displays a random code which changes every minute. The
participant texts this code to our shortcode phone number (see Appendix Figure S5 for a photo
of this interaction). For individual n at day and time t, the service sends an immediate airtime
reward of scheckinn for checking in, as well as a randomized offer to wait ∆tnt minutes for a
payment of snt Naira. To accept the offer, a participant may wait at the bus stop, and after at
least ∆tn minutes text back the new code that the enumerator’s tablet then displays. This code
allowing us to verify they had waited the requisite amount of time. If the participant does not
accept the offer, they can continue with their day. By observing the combinations of wait time
and payments that are accepted and rejected, we are able to identify participants’ value of time.
Check in offers scheckinn were randomized between individuals (₦200, 400, 700, or 1000) and then
held fixed over the experiment. Wait offers (∆tnt, snt) were randomized for each individual-day.
Individuals were told summary statistics about the distribution of wait offers.32 Under the first
three days checking in, participants were given shorter (or no) waits and higher offers, to get
them accustomed to checking in and to get a baseline on their typical arrival time at the bus
stop.33 Further details on implementation are provided in Online Appendix S2.

Theory. Because engaging with our experiment represents a hassle, we model the decision to
participate. After a commuter has arrived at a bus stop, having already chosen a travel mode
(minibus), she decides whether to check in, and then whether to accept an offer to wait. We work
backwards, based on utility defined in equations (1) and (4).

Conditional on checking in, she will accept an offer to wait ∆tnt for payment snt if

αm − γ(pm − snt)− η(tm +∆tnt) + ϵmnt+∆tnt > αm − γpm − ηtm + ϵmnt.

where we omit route subscripts (ij) and allow the idiosyncratic error ϵmnt to depend on time.
Decomposing the idiosyncratic error into a component that is stable across short waits and one
that may vary yields ϵmnt = νmn + νnt. Then the commuter will wait if

D∗
nt = γsnt − η∆tnt + νwait

nt > 0,

where we define νwait
nt = νnt+∆tnt − νnt.

Checking in incurs a time cost of tcheckin but provides immediate payment scheckinn plus any
expected benefit of wait offer, captured by utility

C∗
nt = γscheckinn − ηtcheckin + E[D∗

nt|D∗
nt > 0] Pr(D∗

nt > 0) + νcheckinnt

32They were informed, “You’ll also get an opportunity to earn ₦20-1250 more by waiting between 3-25 minutes.
The average offer will be ₦150 for 10 min.”

33Participants were randomly assigned to either have one or two initial days with zero wait, and then high offers
for the rest of this initial period.
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where νcheckinnt captures idiosyncratic utility.

Estimation Procedure. We assume that the idiosyncratic errors are jointly normally distributed[
νwait
nt

νcheckinnt

]
∼ N

(
0,

[
1 ρσcheckin

ρσcheckin (σcheckin)2

])
,

fixing σwait = 1. In our data we observe the decision to check in Cnt = I {C∗
nt > 0} and, only

if the person checks in (Cnt = 1), the decision to accept Dnt = I {D∗
nt > 0}. Because scheckinn is

excluded from the waiting decision, we can use it as an instrument for the decision to check
in. We calibrate the average hassle cost of checking in, tcheckin = 1.31 minutes, by having each
enumerator time how long it took to walk to their spot, text the code, and wait for a response.34

We estimate using maximum likelihood and cluster standard errors at the commuter level.

FIGURE 4. Wait Experiment
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Note: Panel (A) plots offers (₦: y-axis) to wait (minutes: x-axis), with the proportion accepted shaded. The size of
each point scales with the number of observations given that particular offer. Offers were randomly drawn from a
weighted distribution that gave higher probability to lower times and offers. Panel (B) plots various outcomes by
check in offer (₦: x-axis).

Results. We plot the experimental data in Figure 4. Figure 4A shows the distribution of offers
and acceptances. We drew from a distribution where shorter times were more likely, with
offer values tending to increase with time, but still include variation in both. Participants are
much more likely to wait for shorter times and higher payments, though there is idiosyncratic

34Each enumerator timed the following sequence using a stopwatch: beginning at the bus stop, walk to the location
where the enumerator typically stands, type in and send the random code, and then walk back to the bus stop. These
estimates ranged between 28 and 144 seconds; we took the average.
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variation, which depends on the individual and day. Figure 4B illustrates the selection issue. On
average, respondents report planning to travel 91% of weekdays in the first week, and this does
not vary by the (randomly assigned) check in offer. However, the proportion of days checked
in is 55%, suggesting that participants are not engaging with the experiment every time they
travel. But participants randomly assigned higher check in offers are more likely to check in,
confirming that we may use this as an instrument. We also find that although respondents given
higher check in offers check in more frequently, they are less likely to accept the subsequent
wait offer, which would be consistent with them being induced to check in on days they have
particularly high value of time.

Estimated parameters using our selection-corrected maximum likelihood procedure are
shown in Table 7. We obtain η̂ = 0.0464 and γ̂ = 0.0025; combined these suggest a disutility of
waiting of ₦18.94 per minute. This corresponds to 2.9 times the average wage in our sample, or
2.6 times the civil service minimum wage closely following the study’s conclusion.35

TABLE 7. Commuting Utility Parameter Estimates

γ (utils/₦) 0.0025***
(0.0002)

η (utils/min) 0.0464***
(0.0031)

η
γ (₦/min) 18.9357***

(1.7123)

σcheckin 14.3662***
(3.901)

ρ 0.5163***
(0.0588)

N 8640

Avg. Log Likelihood -8720.18

Notes: Standard errors clustered at the
user level. Estimation fixes σwait = 1.
* p<0.1; ** p<0.05; *** p<0.01.

We estimate a positive ρ, suggesting a positive correlation of wait and checkin shocks, which
is consistent with participants being less likely to both accept and check in on days they are
rushed. We also find that the estimate of σcheckin is substantially larger than σwait = 1, suggesting

35Respondents reported monthly income in nine categories; we use each category’s midpoint to compute an
average monthly income of ₦61,289. While Lagos civil servants’ minimum wage was ₦35,000 in 2023 (unchanged
since 2019), it increased to ₦70,000 in 2024. We use the updated figure, as the 2023 wage likely lagged contemporary
levels. Calculations assume 40 hours per week and 4 weeks per month.
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the decision to commute and check in is more idiosyncratic than that to accept waits.

Comparison to Other Estimation Procedures. In Appendix Table S6 column (2), we show
that a model that assumes perfect compliance estimates a value of time of ₦8.33 per minute:
undervaluing the hassle of waiting by 56% relative to using a method to correct for selection into
engaging in the experiment. This corresponds to 1.3 times the average wage in our sample or 1.1
times the average civil service wage closely following the study’s conclusion. It is reassuring that
without a selection correction, our field experiment yields a value of time close to the wage—a
common benchmark.

In transportation studies it is common to infer the value of time from hypothetical choices or
stated preferences. In the baseline survey we asked participants to make hypothetical choices
between options with varying costs and wait times.36 The value of time estimated from hy-
pothetical choices is ₦46.46 per minute–overstating our main estimate by a factor of 2.5, as
shown in Appendix Table S6, column (3). Other work also finds hypothetical choices can greatly
overstate valuations (Kremer et al. 2011).

Robustness. We assess several notions of robustness in Online Appendix S2.5. We assess
alternate specifications in Appendix Table S23. When we allow separate η parameters by income,
we estimate that commuters with above median income value time at ₦20.62 per minute, relative
to ₦18.17 for those with below median income (column (2)). We find slight diminishing disutility
when we allow utility to include a squared term for waiting time (column (3)). Given that the
heterogeneity and curvature we estimate are both slight, we focus on the simple specification
as our main specification. Estimates are similar under alternate sample definitions, shown in
Appendix Table S24. Given that our estimated value of time is large relative to wages, we will
also asses sensitivity in welfare exercises.

We evaluate the possibility that participants arrive to the bus stop earlier to take advantage
of waiting offers in Online Appendix S2.5.2. If that were the case, one could adjust the model
to account for the scheduling friction. However, we do not find consistent evidence of such
schedule adjustments.

Estimates are also similar under a model that accounts for the possibility that, regardless
of their hurry, participants accept a wait offer if a bus does not arrive. To limit this possibility,
we asked our enumerators to stand away from bus stops, not in direct line of sight. Online
Appendix S2.5.3 estimates a model in which the decision to accept a wait offer depends on
whether a bus arrives. For the range of arrival frequencies we observe in our data, this does not
meaningfully affect our estimates.

36We asked about 5 pairs of offers.
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7. Welfare Effects

Finally, we combine our estimates of treatment effects and parameters to assess how the rollout
of public transit affected the welfare of different groups of commuters and drivers. We compute
welfare impacts on commuters following equation (10) and on minibus drivers following
equation (11) and using the point estimates from Table 5. Results are shown in Table 8. 95%
confidence intervals are reported in parentheses. Appendix Section S3.3 provides details.

Commuters. At baseline, each commuter earns an average of $0.86 surplus per day from the
preexisting system, as shown in the first row of Panel A. Overall, public transit increases the
surplus of commuters on treated routes by $0.20 per day (23%), as shown in Column (1). The
following three rows decompose this effect using equation (10). The benefit of introducing the
new variety, without accounting for impacts on private transit, is $0.22 per day. But longer wait
times cost travelers $0.04 per day, and lower fares would add $0.02 per day in benefits (taking
our point estimates). Although the treatment effect on fares were not statistically significant,
we find that both welfare adjustments are statistically significant, with zero excluded from the
confidence intervals. Ultimately, commuters’ disutility from increased wait times outweighs the
benefits of reduced fares, so private market impacts harm treated commuters. The net loss from
the private response is 12% of the total impact on treated routes.37

Commuters on connected routes also benefit from the price reductions we document in
Table 5. Each commuter on a connected route gains $0.01 in surplus per day arising from price
reductions (column (2)). Although small individually, there are around four times as many
commuters on connected routes as on treated routes.

The third column aggregates these effects and reports the change in total commuter surplus
in millions of dollars per month. Ignoring the private sector’s response yields an estimated
increase of $1.33 million per month. However, longer wait times for private transit reduce total
surplus by $0.26 million per month, while lower prices on both treated and connected routes
boost surplus by $0.41 million per month. Three quarters of the surplus from price reductions
comes from connected routes, demonstrating how small diffuse impacts add up across the
network. On aggregate, the private sector’s response raises aggregate commuter surplus from
public entry by $0.14 million per month to $1.47 million per month—accounting for 10% of the
total commuter welfare gains from public transit.

Drivers. While commuters benefit from public transit entry, minibus drivers face signifi-
cant losses from increased competition. At baseline, each minibus driver earned an aver-
age surplus of $11.87 per day, as shown in the first row of Panel B. Overall, drivers lose

37This is also the amount we would overestimate the benefits to commuters on treated routes if we ignored the
private response. 95% confidence intervals for this ratio are [-3%,37%]. We also note the quantification includes all
routes that were opened, not just the sample we collected panel data on.
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an average of $2.98 in surplus per day (25%, second row). These losses are the same for
drivers on treated and connected routes, because driver mobility equalizes expected profits.

TABLE 8. Welfare Effects of Introducing Public Transit

Individuals Aggregate

($/individual/day) ($mn/month)

Treated Connected

Panel A: Commuters Number: 252,004 919,579 1,171,583

Baseline surplus from private transit 0.86 0.86 24.01
[0.67,1.19] [0.67,1.19] [18.76,33.13]

Effect of introducing public transit +0.20 +0.01 +1.47
[0.14,0.29] [0.00,0.03] [0.94,2.16]

Direct benefit of public transit +0.22 0 +1.33
[0.17,0.31] [1.04,1.83]

Additional impact from decrease in private departures -0.04 0 -0.26
[-0.07,-0.02] [-0.42,-0.12]

Additional impact from decrease in private prices +0.02 +0.01 +0.41
[0.00,0.04] [0.00,0.03] [0.02,0.80]

Panel B: Minibus Drivers Number: 1,800 10,040 11,840

Baseline surplus from private transit 11.87 11.87 2.97
[9.01,13.36] [9.01,13.36] [2.25,3.34]

Effect of introducing public transit -2.98 -2.98 -0.75
[-4.25,-1.12] [-4.25,-1.12] [-1.06,-0.28]

Accounting for decrease in private departures, ignoring route switching -2.35 0 -0.09
[-3.42,-1.04] [-0.13,-0.04]

Accounting for prices and private departures, ignoring route switching -4.76 0 -0.18
[-6.85,-2.10] [-0.26,-0.08]

Additional impact of allowing route switching +1.78 -2.98 -0.57
[0.97,2.61] [-4.25,-1.12] [-0.80,-0.20]

Panel C: Public Bus Drivers Number: 1,640 0 1,640

Wages - - +0.21

Panel D: Costs

Operating Costs (Buses) - - +2.15
Operating Costs (Terminals) - - +0.11

Notes: 95% Confidence intervals reported using a bootstrap procedure which draw 1000 values of γ, η, θ, σ,∆tWijM ,∆pijM , N̂
Trips
ij from a normal distribution with

mean equal to each parameter’s point estimate and a standard deviation equal to its standard error. Driver surplus at baseline is measured using driver income
net of all fees and expenses on the last day traveled in the baseline survey. Operating costs provided by LAMATA, and include fuel, maintenance and insurance
for buses.

The subsequent rows decompose this loss in three steps. If prices and route choices were
fixed, the drop in demand (i.e., fewer daily trips) would lower drivers’ profits on treated routes
by $2.35 per day, while drivers on connected routes would remain unaffected (since their demand
is unchanged). When the price decline on treated routes is incorporated, the loss for these drivers
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nearly doubles to $4.76 per day while those on connected routes remain unaffected.38 Finally,
accounting for changes in routes benefits those on treated routes by $1.78 per day, as they can
shift to untreated alternatives, while it hurts drivers on connected routes by $2.98 per day due
to longer queues and lower fares. In aggregate, minibus drivers lose $0.75 million per month, as
shown in column (3) of Panel B.

Net Return. On net, commuters gain $1.47 million per month, while minibus drivers lose $0.75
million, resulting in a net benefit of $0.72 million. Public bus drivers earn wages of $0.29 million
per month (an upper bound for their surplus, shown in Panel C). If one includes those wages, the
combined surplus of $1.01 million falls short of the $2.26 million in operating costs, mostly fuel
expenses, reported in Panel D. These calculations exclude other factors, such as emissions, that
may affect societal surplus. However, ignoring the private response would meaningfully change
the net return: commuter benefits of $1.33 million per month—with no driver losses—would
come much closer to operating costs.39

Robustness. Appendix Table S30 replicates the results using wild bootstrapped standard
errors for the changes in departures and prices when computing confidence intervals. Although
the confidence intervals widen slightly, zero remains excluded from most intervals—except for
the contribution of price changes to individuals in columns (2) and (3), where zero is marginally
included. Appendix Table S31 presents key quantitative results using different parameter values
across columns. In column (2), we use the lower value of σ = 2.04 estimated via PPML; the
driver results are very similar. Columns (3) and (4) adjust the estimated value of θ upward and
downward by 25%. This adjustment notably affects the estimate of the direct effect, as evidenced
by the scaling of the first line in equation (10), though the results remain qualitatively similar
overall. Finally, column (5) evaluates the impact of a time valuation that is 25% lower than that
estimated in our wait time experiment—reflecting a scenario where participants value airtime
less than cash. In this case, commuter benefits are reduced (since commuters are more averse to
longer private wait times), but only by 4%.

8. Conclusion

Despite ambitious policy goals to replace decentralized private transit with centralized public
transit, many developing country cities will have hybrid systems. This paper analyzes the
interplay of public and private transit in Africa’s largest city. We combine extensive data collected

38We observe changes in supply but not demand on connected routes, and so assume the change in driver trips
and fares on connected routes is generated by drivers switching from treated to connected routes.

39Mass transit systems in large cities London, New York and Paris receive subsidies equal to 50-75% of operating
costs, so the gap between societal benefits and costs is smaller here if we consider only commuters and about the
same once drivers are accounted for.
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from observations, surveys, and ticketing, with quasiexperimental variation on the rollout of
new public routes and an experiment on wait times with commuters at bus stops. We find
that public entry partially displaces private minibuses, impacts fares, and causes drivers to
reallocate across the system. We find that commuters have a high value of time. Altogether,
we find that building a public transit system affects even commuters who continue to use the
private network. Our analysis illuminates one particular design decision: Lagos’ public system
serves different stops from the private system, which prevents passengers from pooling into the
first passing bus, and results in larger wait times (Bly and Oldfield 1986).

Quantifying these impacts may be important for better understanding resistance govern-
ments face by incumbents when introducing these types of reforms. Our results also suggest
indirect impacts represent an important component of the total return to infrastructure invest-
ments. Our results suggest that distributional effects of government entry can be in network
markets dominated by private incumbents.

Many further questions remain. When public transit is built, will private transit automatically
rearrange into a socially useful structure (e.g., feeders), or does special care need to be taken?
How should the design of public transit systems account for the service that can be provided
by private networks? Are the regulations that are sufficient for a completely private system
sufficient for one where private and public systems potentially connect and overlap? What
combination of public and private transit best serve these growing cities?
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Appendix S1. Additional Details

S1.1. Minibus Driver Survey Sampling

Minibus drivers are difficult to sample. We found that terminal queues were a natural place to recruit
drivers into our survey, but drivers travel frequently and some skip terminal queues. We attempt to
obtain representative statistics on the population of minibus drivers using two sampling streams and a
reweighting correction.40

We recruit most of our drivers (632) from terminal queues. For these drivers we apply a sampling
correction. We seek to estimate the average value of a characteristic x in a population. However, each
individual i may be in different states: although we sample individuals in a queue, the likelihood that i
is in the queue is Wi. We ask our sampled drivers what proportion of their trips begin at terminals (wi;
that is one minus the proportion skipping the terminal start).41 This yields an estimate of Wi: wi. We
apply this sampling probability in an inverse probability weight for our results using the driver survey.
Note that if individuals are in the queue with the same probability (wi ≡ w), this would not reweight
individuals in this sample relative to one another. Alternately, note that this correction cannot help us
for individuals who are never observed in the queue: if wi = 0, we would never observe the individual
in this sample.

To attempt to capture some of these drivers who queue less, we specified that a portion of our sample
was to be recruited from drivers waiting outside terminals. These drivers (217 in number) are more
likely to skip terminals starts: 12% report always skipping the terminal start. We had initially planned to
apply the above correction in reverse for this sample, which would have assumed that a driver outside
the terminal was planning on skipping the queue; however, 50% of these drivers report never skipping
the queue in the past workday. So some of these drivers may be simply taking an extended break. For
that reason, we do not apply a sampling correction to these drivers; we include them in the sample each
with a weight of 1 (equivalent to a 100% probability of being sampled).

Online Appendix Table S7 compares the weighted statistics to their unweighted counterparts.

S1.2. Price Sensitivity

This section estimates the substitution parameter θ by estimating trip responses to unexpected public
bus fare changes. If public buses follow the same indirect utility structure as minibuses (equation (4)),
the commuter model implies we can recover θ = −∂ lnNrt

∂prt
1

γE[(1−sijP )] using the semi-elasticity of the
number of trips to price (estimated here), combined with our field experiment’s estimate of γ and the
observed share E[(1− sijP )].

S1.2.1. Background on Price Changes

The government implemented several changes to public bus prices in 2023 and 2024, in response to pres-
sure arising from rising fuel prices and macroeconomic conditions. On August 2, 2023, the government

40This reweighting procedure was inspired by a conversation with Rob Jensen.
41We compute this proportion based on the trip diary for the previous day (including up to 8 trips) plus the trip they are

about to complete on the day of survey (where we count them as beginning at the queue if they are sampled in the queue).
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announced a 50% subsidy on public transit. Alongside this first price change, the government said it had
arranged with minibus operators to reduce prices by 25%, but it has limited control over minibus fares
so it is not clear whether minibus fares changed. We will treat this first price change separately from
changes that followed. On November 7 the public transit subsidy was reduced to 25%.42 On January 29,
2024, the public transit subsidy was eliminated, and on February 26, 2024, it was reinstated at 25%. This
provides four changes in price for public buses, all of which were unexpected.

We illustrate the price changes by route in Figure S1. Each panel shows a different price change
date, plotting the price two weeks prior (x-axis) and and two weeks after (y-axis), with a point for each
combination of route and entry point. The size of the point is scaled to the number of boardings over
those days. The plots include two reference lines: one corresponding to the announced price change
(dashed blue) and the 45◦ line corresponding to no price change (dotted red). The observed prices
broadly coincide with the announced price changes; however in some cases, prices were rounded to
convenient currency multiples, and some smaller routes did not follow the overall price changes. As a
result of these discrepancies, the first change in particular lowered prices by less than 50% on average.

FIGURE S1. Public Bus Price Changes
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Note: Plots show the fares the two weeks before (x-axis) and after (y-axis) designated price changes on public bus routes. Each
point represents a combination of an initial fare and final fare, with size scaled to the number of boardings on routes and
boarding locations facing those corresponding fares during those days. Dashed blue line corresponds to the announced price
change; dotted red line corresponds to no price change.

We next show descriptively the trends in prices, ridership, and number of public buses in Figure S2.
The dates of the price changes are designated with dashed blue lines. The sharp changes in average
fare paid are evident in the top panel. These changes coincide with changes in the total number of
trips on public transit, as shown in the second panel. However, price is not the only factor affecting the
number of trips. Some changes in trips coincide with changes in service, as shown in the final panel,
which shows the number of unique buses used each week. We note that although service is relatively
stable around price changes, there is a slight increase in buses following the first price change (which
would reduce wait times for passengers). For this reason, in addition to the coincident announcement
about minibus fares, we exclude the first price change from our preferred estimates, but report results
for all changes. Our specifications will focus on relatively narrow windows around each price change
to minimize the risk of other minibus fare and supply adjustments. Demand will end up responding

42On November 6, the public transit subsidy was eliminated for a single day. We will include fixed effects in our specifications
for this particular day.
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quickly, suggesting that despite these narrow windows, we can still capture the full adjustment.
Overall these results suggest an empirical strategy that focuses on the variation in ridership around

the sharp fare changes, accounting for slight deviations in the implemented fare changes between
routes.

FIGURE S2. Public Transit Bus Trends 2023-2024
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Note: Panels show the trend in average fares, total trips, and number of buses in the public bus system, per the electronic
ticketing data, with a 7 day rolling average. Dotted lines indicate dates of fare changes. The major dropoff in travel and supply
around 2023-12 to 2024-01 begins around Christmas.

S1.2.2. Estimation

We estimate the impact on prices around the discontinuities, and relate this to the corresponding impact
on ridership. This allows us to account for the deviations in implementations. We assemble a dataset
from e-ticketing at the route-day (rt) level, and include only observations within a designated number
of days of a price change.43

Dynamics. To assess what time window is relevant for measuring the change, we first estimate the
response of trips after different windows of time. We focus on the second price change (7 November
2023), because it is furthest from changes in the supply of buses and from other price changes. We jointly

43There are some route-days that have no boardings. Many of these appear to be idiosyncratic, suggesting they result from
missing data. For that reason, we omit route-days that contain no boardings. We compute the mean price for each route-day,
to account for minor variation in the recorded fare. In the log price specifications we omit a small number of observations that
have a recorded price of zero.
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estimate the system of seemingly unrelated linear regressions on price and log ridership,

prt = ζWindowt + ϕr + ψDoW (t) + νrt

logNrt = αWindowt + µr + ξDoW (t) + ϵrt

where Windowt is a vector of indicator variables, which is 1 if t lies within a given window of days of
the price change and 0 otherwise. We include fixed effects for route and day of week (DoW (t)). The
price semi-elasticity for window k is then given by ∂ lnNrt

∂prt
= αk

ζk
(in log trips per ₦).

We also estimate a detrended version to account for possible trends in ridership. Using data from
only the period before the price change, we estimate the trend equation

logNrt = β · t+ λr + χDoW (t) + ert.

We then predict the ridership for all periods ˆlogN rt, and estimate the detrended regression

logNrt − ˆlogN rt = αWindowt + µr + ξDoW (t) + ϵrt

We estimate standard errors by bootstrapping the entire joint estimation procedure, resampling routes
with replacement. We include 28 days before the price change (before which there was a temporary
supply shock) and 42 days following the second price change (which coincides with December 18), as
travel demand drops off around Christmas (December 25).

Results of the two specifications are shown in corresponding columns of Table S4. In both specifi-
cations, we see that trips adjust quickly in response to the price change: the price adjustment in later
periods is similar to that in the first 14 day period, and if anything lower. Based on this, we move
forward with 14 day windows, which allows us to use variation from more price changes.
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TABLE S1. Response to a Price Change in Public System: Dynamic

(1) (2)

Price Impact ≤14 days (₦: ζ1) 91.0832*** 91.0832***
(4.925) (5.5768)

Price Impact 15-28 days (₦: ζ2) 89.6402*** 89.6402***
(5.1617) (5.6865)

Price Impact 29-42 days (₦: ζ3) 88.9993*** 88.9993***
(5.2662) (5.7557)

Log Trip Impact ≤14 days (α1) -0.2327*** -0.2569***
(0.0394) (0.0549)

Log Trip Impact 15-28 days (α2) -0.2115*** -0.2534***
(0.0367) (0.0714)

Log Trip Impact 29-42 days (α3) -0.1632*** -0.223***
(0.0317) (0.0853)

Price Sensitivity ≤14 days (log trips/₦: α1
ζ1

) -0.0026*** -0.0028***
(0.0005) (0.0007)

Price Sensitivity 15-28 days (log trips/₦: α2
ζ2

) -0.0024*** -0.0028***
(0.0005) (0.0009)

Price Sensitivity 29-42 days (log trips/₦: α3
ζ3

) -0.0018*** -0.0025**
(0.0004) (0.001)

Trips detrended X

N 13466 13466

System R2 0.9402 0.9402

Notes: Fare and log trips effects estimated jointly in a seemingly unrelated regression around the 7 November 2023 price
change, including route and day of week fixed effects. Ratio of effects computed from these individual estimates. Specifications
also include an indicator for 6 November 2023 (the single day where the subsidy was entirely removed). In the detrended
specification, a linear time trend in the trips measure is estimated on the pre-period; this trend is then removed from all
periods. Standard errors in parentheses estimated via bootstrapping the entire procedure, resampling routes with replacement.
* p<0.1; ** p<0.05; *** p<0.01.

Pooled estimates. We produce our main estimates with an instrumental variables specification. We
estimate price sensitivity with a specification of the form

logNrt = ηprt + µr + λAroundDiscontinuityt + ϵrt

We instrument for price using the first stage specification

prt = ζAfterDiscontinuityt + ϕr + λ̃AroundDiscontinuityt + νrt
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where AfterDiscontinuityt is a vector of indicator variables for which the k’th is 1 after the k’th price
change and zero otherwise, and AroundDiscontinuityt is a vector of indicator variables for which the
k’th is 1 within 14 days of the k’th price change and zero otherwise. We include only observations
within 14 days of a price change.44

Estimated price sensitivities are shown in Table S5. The first column shows the estimate pooled over
all price changes. The second column shows the estimate pooled over all but the first price change,
since that change coincides with a slight supply increase and the announced change on minibus prices.
The last 4 columns report the estimates from each price change individually. Estimated sensitivities
are fairly similar regardless of which price change is used, which grants confidence that the shifts in
ridership are not driven by extraneous factors. We use the estimate from column (2) as our value of
∂ lnNrt
∂prt

= −θγE[(1− sijP )].
As a robustness check, we verify that our estimate is not arising from a supply shift, in Appendix

Table S21. We estimate the same specifications but with the outcome set to the log number of buses. The
estimated effects are an order of magnitude smaller, have mixed signs, and the estimate on the ‘All but
first’ specification is not statistically significantly different from zero. This suggests our procedure is not
simply capturing shifts in supply.

Appendix S2. Wait Time Experiment

This section provides more details on the wait time experiment described in Section 6.2.

S2.1. Implementation

Enumerators had bright yellow hats, and waited near bus stops. Figure S5 shows a participant checking
in with one of our enumerators.

The design of the experiment had several features to improve performance under poor network
connectivity, and to minimize the chance of fraud. The sequence of random numbers was drawn in
advance and so only needed to be loaded once on the enumerator’s phone (it did not require an active
internet connection). Numbers were different from day to day so one could not text the previous day’s
code. The sequence was saved in a separate file and designed to be difficult to parse even if one viewed
the source code. The website required logging in with a valid enumerator phone number, and all usage
was logged to detect suspicious usage or sharing. We did not find evidence of suspicious usage.

All participants responded to a baseline survey during onboarding. We cross randomized several
aspects of the design:

• Bus stops were randomly selected to have the game play for either 3 or 5 weeks

• Each participant received a random checkin offer scheckinn which was then held constant throughout
the experiment

44We also include an indicator for the date 2023-11-6 (the single day where the subsidy was entirely removed) in both stages,
for regressions that span that date.
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• Upon checking in at the bus stop, each participant received a wait offer draw (snt,∆tnt) which
differed by day:

– Participants were randomly allocated to one of two onboarding experiences:

* For one group, on the first checkin at the bus stop, participants received a reward of
snt =₦2000 for zero wait (∆tnt = 0). On their next two checkins, participants received a
random draw (snt,∆tnt) which was generous (high payment per wait).

* For the other group, on the first two checkins at the bus stop, participants received a
reward for zero wait (∆tnt = 0; snt =₦2000 on the first checkin and ₦500 on the second).
On their following checkin, participants received a random draw (snt,∆tnt) which was
generous (high payment per wait).

– On each checkin after their third, all participants received their own random draw (snt,∆tnt)

from the stable distribution.

• Starting July 24, 2023, bus stops were randomly selected to either (1) transition to a different set of
‘scheduled’ wait time offers which was announced by text message, (2) be sent a reminder message
about the game (to act as a placebo) and then continue as normal, or (3) continue as normal with no
reminder message. We omit the scheduled user-days from the analysis in this paper.

Near the end of the game, we followed up with an endline survey. For some participants this took
place during the final week of the game; for some it took place after the game had concluded.

S2.2. Deviations from Pre-Analysis Plan

This section describes deviations from our pre-analysis plan (PAP).
Compliance rates were lower than we expected, so we revised our design to (1) use a selection

correction in our estimation, (2) record intentions to travel as well as actual check ins, and (3) randomize
the checkin offer scheckinn to act as an instrument for checkins that is excluded from the wait decision.
We treated initial data as pilot data, and revised the PAP accordingly. When implementing the theory in
the paper, we corrected a mistake in the error terms in the selection correction, and also simplified the
model so that νwait

nt is unknown at the point of checking in.
We refined a few aspects of the experiment while it was under way. Our main specifications include

only users exposed to the final design. Table S24 column (4) shows that results are similar if we include
earlier observations while the design was changing.45

The experiment was occasionally affected by network downtime. If the network prevented the
sending of text messages, we informed participants to resend the messages in the same sequence when
network became available (which would result in them being paid out as normal, since our system

45On June 9, 2023, to increase takeup we increased the payment upon registration from ₦500 to ₦1000 and increased the
first day offer amount from ₦500 to ₦2000. We also began randomly allocating participants to either receive one or two days
of zero wait offers to measure anticipation. Early recruits were given the information about the distribution of offers (as
described in footnote 32) via text message on June 16; recruits after then were provided this on a handout upon intake. Prior to
June 18 we varied the distribution of offers as we were learning the range that attained variation in acceptance; from June 19
onward, we used a single stable distribution for our main treatment. Our main sample includes only participants who began
on or after June 19.
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validates waits based on the random codes, not on when they are sent). When systematic downtime
affected many users, we followed a protocol to send apology text messages and transfer airtime once
the network was up.

S2.3. Likelihood

Let F x indicate the marginal CDF along error x. Then the average log likelihood is given by

l(γ, η, σcheckin, ρ|C,D, scheckin, s,∆t) =

1

N

∑
nt

[
CntDnt log

(
1− F νwait

(−Dnt)− F νcheckin(−Cnt) + F (−Dnt,−Cnt)
)
+

Cnt(1−Dnt) log
(
F νwait

(−Dnt)− F (−Dnt,−Cnt)
)
+

(1− Cnt) logF
νcheckin(−Cnt)

]
(S1)

where participation thresholds are given byDnt(γ, η) = γsnt−η∆tnt andCnt(γ, η, s
checkin
n ) = γscheckinn −

ηtcheckin + E[γsnt − η∆tnt + νwait
nt |γsnt − η∆tnt + νwait

nt > 0] · Pr(γsnt − η∆tnt + νwait
nt > 0), the number

of total observations is N .

S2.4. Additional Results

We present descriptives from our participants in Appendix Table S22. The rows are divided into three
panels. The first panel presents characteristics measured in the baseline survey. The second panel shows
settings and behavior in the game itself. The final panel shows responses in the endline.

Table S22 columns (1-6) report summary statistics of these measures across each individual to provide
a description of our sample. The remaining columns (7-11) assess the success of our randomization.
They report the correlation between the variables listed in the column and row, at the individual level.
The correlation of randomly selected variables with baseline characteristics are all close to zero. Some of
these variables are correlated with game outcomes downstream of treatment (for example, the checkin
offer, scheckinn , is correlated with the proportion of days checking in, Cn).

In the endline we asked about the wait time and offer they expected to obtain in the study.46 The
expected wait time (mean 10.61 minutes; median 10) lines up closely with the distribution we drew
from (mean 10), as well as the empirical average (mean 10.08; median 9.92). However, participants
appeared to struggle with answering the monetary offer; there were many outliers in these responses,
and the mean participants reported is roughly 10 times the empirical mean, suggesting the question
was not understood. (Participants may have answered how much they would have liked to be paid,
rather than what they expected the system’s offer would be.)

46We asked, ‘How long did you think we would ask you to wait at the bus stop before taking the bus?’ and ‘How much did
you think we would offer you to wait that long?’, respectively.
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S2.5. Robustness

S2.5.1. Sample Definitions

We assess robustness to alternate sample definitions in Table S24. In column (2) we use survey data
to remove observations for days in the first week that participants told us they did not plan to travel
(based on the baseline), and days in the last week that participants told us they did not travel (based on
the endline). Column (3) excludes the high offers from the first days of checking in. Column (4) includes
observations during the a pilot portion of the experiment where some design features were changing.47

Estimates are similar in all cases.

S2.5.2. Arrival Time Adjustment

Another possible concern is that participants may anticipate a return to waiting, and so arrive at the
bus stop early. If there were consistent evidence of this, our model could be adjusted to account for
the scheduling cost. We assess the degree to which arrival times change in response to wait offers
in Table S25 by regressing check in times at the bus stop (in minutes since midnight) on covariates.
We perform three types of comparisons. Column (1) compares the time of the first checkin (omitted
category) to later checkins, broken down by offer type, over the entire sample. Offer types include the
no-wait second checkin (randomly assigned), the generous offers in the third and second checkin (for
those not assigned a no-wait second checkin), and the stable distribution which was offered from the
fourth checkin onward. For all of these offers, estimates are similar: participants check in on average
10.3 to 11.7 minutes earlier for the first checkin. This effect is the opposite one would expect if they
solely factored in the wait time: they may have arrived earlier on the first check in to have enough time
to resolve uncertainty about the experimental setup. Column (2) adds to this specification a control for
days elapsed. If it takes time for participants to adjust their schedules to arrive earlier, this coefficient
would be negative. However, it is a small and noisy zero. Column (3) restricts the sample to only
the second checkin, for which participants were told that they would receive a payment either with
or without a wait (randomly assigned). Here we see some evidence of adjustment: those assigned
the no-wait offer arrive on average 6 minutes later; however the estimate is extremely noisy: despite
having 535 observations we fail to reject a difference with zero (p-value: 0.50). Altogether, we do not
see consistent evidence of schedule adjustment in response to the wait time experiment, and so have
currently left that out of the model.

S2.5.3. Arrival Dependent Waiting

We asked our enumerators to stand away from bus stops, not in direct line of sight. However, it
is possible that participants monitored bus arrivals, and decided whether to accept our wait offer
depending on whether a bus arrived in the waiting time interval. As a robustness check we estimate a
likelihood for which waiting depends on arrivals, using data we gathered on the frequency of minibus
departures.

47Described in Section S2.2.
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Let Pr(A) be the probability that a bus arrives within a timespan of ∆tnt minutes. We assume that
the number of buses within that period, X , follows a Poisson arrival process, so that the probability of
at least one arrival is given by Pr(A) = Pr(X ≥ 1) = 1− e−∆tntλ where λ is the average rate at which
buses arrive.

Now let’s refine the effect of the wait offer on travel time, building on equations (1) and (4). Let
tm be the status quo departure time and tm(∆tnt) be the departure time if the person accepts a wait
offer of ∆tnt minutes. Conditional on checking in, the utility of accepting the offer has two cases. If no
bus arrives within the interval ∆tnt (case N = 1−A), then the offer entails no additional wait and the
person will check out as long as

αm − γsnt − ηtm + ϵmnt+∆tnt > αm − γpm − ηtm + ϵmnt.

On the other hand, if a bus arrives in that interval (case A) then the person will skip the bus to
accept the offer only if they value the payment more than the wait. How long is the additional wait?
Let’s assume that the person makes the decision at the beginning based on the expected wait. Since
the Poisson arrival process is memoryless, the arrival of a bus within the interval does not affect the
probability of a bus after, and E[tm(∆tnt)− tm] = ∆tnt. This leads to the original condition,

αm − γ(pm − snt)− η(tm +∆tnt) + ϵmnt+∆tnt > αm − γpm − ηtm + ϵmnt.

Now, decompose the idiosyncratic error into a component that is stable across short waits and one
that may vary, ϵmnt = νmn + νnt. Then the consumer will wait in the two cases if

D∗N
nt = γsnt + νwait

nt > 0

D∗A
nt = γsnt − η∆tnt + νwait

nt > 0.

where we define νwait
nt = νnt+∆tnt − νnt.

Perfect Compliance. For now, assume that compliance is perfect so participants always check in. Then,
if there is no arrival then the probability of waiting is given by F νwait

(−DN
nt) for thresholdDN

nt(γ) = γsnt.
If there is an arrival, the probability of waiting is given by F νwait

(−DA
nt), for DA

nt(γ, η) = γsnt − η∆tnt.
Combining these and the probability of arrival yields the average log likelihood

l(γ, η, σwait, ρ|D, s,∆t) =
1

N∑
nt

Dnt log
(
1− Pr(1−A)F νwait

(−DN
nt)− Pr(A)F νwait

(−DA
nt)
)
+

(1−Dnt) log
(
Pr(1−A)F νwait

(−DN
nt) + Pr(A)F νwait

(−DA
nt)
) (S2)

Note that when A = 1 this corresponds to the main model with perfect compliance. As A decreases,
that increases the likelihood of accepting the offer (Dnt = 1) since the threshold for accepting the offer is
lower since it involves no wait (DA

nt ≤ DN
nt so F νwait

(−DA
nt) ≥ F νwait

(−DN
nt)).
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Imperfect Compliance. Now, let’s consider compliance. The utility of checking in is given by

C∗
nt = γscheckinn − ηtcheckin +Pr(1−A)E[D∗N

nt |D∗N
nt > 0] Pr(D∗N

nt > 0)

+Pr(A)E[D∗A
nt |D∗A

nt > 0] Pr(D∗A
nt > 0)

+νcheckinnt

The average log likelihood is given by

l(γ, η, σwait, σcheckin, ρ|C,D, scheckin, s,∆t) =
1

N∑
nt

CntDnt log
(
1− F νcheckin(−Cnt) + Pr(1−A)

[
−F νwait

(−DN
nt) + F (−DN

nt,−Cnt)
]

+Pr(A)
[
−F νwait

(−DA
nt) + F (−DA

nt,−Cnt)
])

+

Cnt(1−Dnt) log
(
Pr(1−A)

[
F νwait

(−DN
nt)− F (−DN

nt,−Cnt)
]

+Pr(A)
[
F νwait

(−DA
nt)− F (−DA

nt,−Cnt)
])

+

(1− Cnt) logF
νcheckin(−Cnt)

(S3)

where participation thresholds are given byDN
nt(γ, η) = γsnt,DA

nt(γ, η) = γsnt−η∆tnt andCnt(γ, η, s
checkin
n ) =

γscheckinn − ηtcheckin +Pr(1−A)E[γsnt + νwait
nt |γsnt + νwait

nt > 0] · Pr(γsnt + νwait
nt > 0) + Pr(A)E[γsnt −

η∆tnt + νwait
nt |γsnt − η∆tnt + νwait

nt > 0] ·Pr(γsnt − η∆tnt + νwait
nt > 0), the number of total observations

is N , and bold symbols represent vectors. Note that when A = 1 this corresponds to the main model.
We estimate parameters using maximum likelihood, and cluster standard errors at the commuter level.

Results are shown in Table S26 for different bus arrival rates λ. Estimates are very similar even under
extreme arrival rates. We trace out estimates that result under the arrival rates corresponding to various
quantiles of realized headway between individual minibuses observed in departure observations. Note
that these are observations of headways between individual minibuses, not average headways, so
will have a more extreme distribution than any average λ commuters would expect. When buses are
very frequent, the estimates coincide with the main estimate; they remain very similar up to the 95th
percentile of observed individual headways which corresponds to 1.5 arrivals per half hour. At the 99th
percentile of headway (entailing 0.8 buses per half hour), this model would expect commuters to accept
almost all wait offers; the fact that they reject some would then suggest a high value of time ( ηγ = 48

₦/min). The implied value of time only begins to differ dramatically for very extreme values of λ (0.1
buses per half hour, corresponding to a departure every 5 hours, leads to a more extreme estimate of
η
γ = 373 ₦/min). Since average headways are not this extreme, we interpret the results to suggest that
arrival dependent waiting would not meaningfully affect our estimates of the value of time.
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Appendix S3. Theory Appendix

S3.1. Complete Model Details

Model Overview. Given the queuing structure we document in these markets, the supply side consists
of an M/M/1 queuing model with bulk service (Kendall 1953; Kleinrock 1975). Having chosen a route
to work on, drivers queue, load passengers, complete their trip, and return to the origin, taking prices
and the number of entrants as given. Daily profits depend on both the number of trips they expect to
make and the profit per trip. The number of trips they can make in a workday depends on the time
each trip takes plus the time spent queuing. The queuing time is shorter when demand is higher (as
buses fill and depart faster) and when fewer buses are in the queue (since buses reach the front more
quickly). Prices in the market are set by an association acting as a monopolist seeking to maximize its
profits (akin to a rideshare platform).

Government entry introduces a new variety of travel mode that commuters value. As commuters
adopt the new public mode, the arrival rate of passengers into the private market falls, creating a shock
to its equilibrium.

S3.1.1. Commuters

Setup. Time is discrete and the horizon is infinite. Agents do not discount the future, but expect to
exit the model after some period of time. There are I locations, i ∈ {1, . . . , I}. Each period, commuters
arrive at i intending to travel to j according to a Poisson process with parameter µij . We call the pair ij
a route.

Mode Choice. Commuters, indexed by n, select a modem ∈ M to travel the route. Prior to government
entry, M = {M, 0} includes minibus (M ) and an outside option (0) capturing other modes such
as walking or automobile. After government entry, public buses (P ) are added to treated routes
(m ∈ M′ = {M,P, 0}). The individual utility provided by mode m is given by uijmn = uijm + ϵijmn

where ϵijmn is an additive type 1 extreme value preference distributed with scale parameter 1/θ and
location parameter −αm/θ ∀m ∈ M.

The fraction of commuters who choose minibuses is therefore

sijm =
exp (θuijm)∑

m′∈M exp
(
θuijm′

) (S4)

Overall consumer surplus on route ij is

Ūij =
1

γθ
ln

( ∑
m′∈M

exp
(
θuijm′

))
. (S5)

We are agnostic about the utility provided by public buses uijP , and normalize the mean utility
of the outside option uij0 = 0. To account for the potential changing utility provided by minibuses
following government entry, we next model uijM explicitly.
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Value Function for Minibus Travelers. Conditional on having chosen to travel via minibus, a com-
muter arrives at a queue for route ij. Passengers arrive at rate µijsijM , where sijM is the fraction of
commuters who choose to travel via minibus. In what follows, we drop the explicit dependence of
minibus market-specific objects on M where it does not introduce confusion.

With probability βij there is a bus waiting at the top of the queue. The commuter boards the bus, and
pays a per period wait cost η as they wait to depart. Buses depart once they are full to their n̄ passenger
capacity. With probability 1− βij there is no bus waiting on the queue, so the commuter waits until one
arrives and boards the bus. In steady state, it will turn out there are sufficient passengers for this bus to
immediately depart, so we assume this from the outset and verify the conjecture below.

Buses arrive to the queue at Poisson rate λij . The departure rate µijsijM/n̄ depends on how fast
passengers arrive and bus capacity, since each waits to fill before leaving. Once a bus departs, it arrives
at its destination at Poisson rate δAij . Traveling passengers continue to pay the time cost η, but upon
arrival at the destination receive a payoff y− pijM consisting of their earnings for the day net of the fare,
which they value with parameter γ.

We show in Appendix Section S3.2.1 that the expected value function for a commuter who chooses
to travel via minibus is

uijM = γy − γpijM − ηtijM

where tijM = tTijM + (1− βij)t
W
ijM + βijt

F
ijM︸ ︷︷ ︸

t̄WijMtWijM = 1/λij (S6)

tFijM =
1

µijsijM

( n̄
2
− 1
)
. (S7)

Total travel time tijM consists of both expected travel time tTijM = 1/δAij and expected wait time t̄WijM .
With probability βij there is a bus in the queue, and wait time depends on the time it takes for the bus
to fill tFijM . Since each bus is half full in expectation, this is given by the time it takes for n̄/2− 1 more
passengers to arrive. With probability 1− βij there is no bus in the queue, and wait time depends on the
arrival rate of buses to the queue tWijM = 1/λij .

S3.1.2. Supply

We begin by characterizing minibus behavior and profits conditional on having chosen a route, and
then consider driver route choice.

Value Functions for Minibus Drivers. Each route follows a queuing model as follows. At terminal
i, drivers may join a queue for route ij, and wait for buses ahead of them to fill up and depart on a
first-in-first-out basis. A driver joining a queue with NQ

ij buses in it expects to wait

tQij =
n̄

µijsijM
(NQ

ij + 1) (S8)
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minutes in the queue. This is the time it takes for these NQ
ij buses, along with the driver arriving in

the queue, to fill and depart. Once the driver reaches the top of the queue and fills up, it departs and
receives net income per trip of pijM n̄− cij . This depends on the revenues from passenger fares, as well
as a lump sum cost of making the trip cij .

Buses arrive probabilistically at the destination, and at the end of each trip, drivers exit the model
with a probability δEij proportional to the total length of a trip (micro-founded in Appendix Section
S3.2.5). If they do not exit, they return to the end of the queue at i immediately. For tractability we
abstract from the return leg of trips, and take the decision to leave when full as exogenous.48

Appendix Section S3.2.2 shows that the value function of a driver who enters a route ij (specifically,
their value from joining the queue) is given by

V Q
ij =

T

tQij + tTij︸ ︷︷ ︸
N

Trips
ij

× [pijM n̄− cij ]︸ ︷︷ ︸
πij

Intuitively, the value from entering a route depends on the number of trips a driver expects to make
per day on that route and the profit per trip. Business stealing operates through queue lengths: more
entrants on a route will, all else equal, increase time spent in queues through equation (S8) and reduce
the number of trips the driver can complete in a day.

Route Choice. As explained in Section 3, drivers face high costs by the association to register to
operate from a terminal. We therefore treat as separate the decisions of which terminal i to enter and
which route ij to enter conditional on having chosen a terminal.

The value to entering a route ij is given by V Q
ij . Drivers, indexed by φ, who have already entered

terminal i solve the route choice problem maxj{V Q
ij νijφ}, where νijφ is an idiosyncratic profit shock for

each route. We assume these shocks are drawn from a Fréchet or type 2 extreme value distribution with
shape parameter σ, so that the fraction of drivers at terminal i choosing route ij is given by

ρij =

(
V Q
ij

)σ
∑

k

(
V Q
ik

)σ =

(
N trips

ij × [pijM n̄− cij ]
)σ

∑
k

(
N trips

ik × [pikM n̄− cik]
)σ . (S9)

Each period Bi drivers enter terminal i, so that Bij = Biρij join the queue for route ij. We discuss how
total entry Bi is determined below.

Due to properties of the Fréchet distribution, average profits for entrants at terminal i are the same
regardless of the route they choose. These are related to the denominator of the choice probabilities
through

Πi = Γ

(
σ − 1

σ

)[∑
k

(
N trips

ik × [pikM n̄− cik]
)σ]1/σ

︸ ︷︷ ︸
ΠV

i

−Fi (S10)

48In the data we find that 96% of minibuses leave when full.
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where ΠV
i are average variable profits, Γ(·) is the gamma function, and Fi are registration costs charged

by the minibus association to operate at terminal i.

S3.1.3. Minibus Association

We will allow our model to accommodate free or fixed entry of drivers. We solve the association’s
problem under free entry, and then state how the results change under fixed entry.

The minibus association sets prices and registration fees to maximize its revenues at each terminal.
Under free entry of minibus drivers, these are equal to (per-period) variable profits BiΠ

V
i . We formulate

the problem in terms of choosing optimal prices pijM and the number of entrants Bi, where the latter
can then be inverted to solve for optimal registration fees using the free entry condition.49

The association maximizes this objective subject to several constraints. First, it cannot directly control
drivers choice of which route to enter after entry into a terminal. Instead, it understands that as it shifts
overall entry into the terminal and prices on each route, it affects the number of buses on each route Bij

via drivers’ "route choice" constraint50

Bij

Bi
=

(
T

tQij + tTij

pijM n̄− cij

ΠV
i

)σ

. (S11)

Second, the association understands that by changing prices and entry it affects queue times faced
by drivers

tQij =
n̄

µijsijM (pij , Bij)
(1 +NQ

ij (pij , Bij)). (S12)

Third, it faces an adding up constraint

Bi =
∑
j

Bij . (S13)

The association’s problem is therefore represented by the lagrangian

L = BiΠ
V
i

+
∑
j

κij

[
T

tQij + tTij
[pijM n̄− cij ]

(
Bij

Bi

)−1/σ

−ΠV
i

]

+
∑
j

λij

[
tQij −

n̄

µijsijM (pij , Bij)
(1 +NQ

ij (pij , Bij))

]
49In a quantitative implementation we could follow the literature on ridesharing platforms (e.g. Rosaia (2024)) and assume

the association maximizes a combination of profits and consumer surplus. This would capture that the government may
pressurize the association towards benefiting commuters in exchange for the right to oversee transit provision and for the land
given to it for terminals. However since we do not use the association side of the model in the sufficient statistics approach,
we omit this for brevity.

50We drop the dependence of profits on the constant Γ(σ−1
σ

) to economize on notation. We also note that choice probabilities
sijM and queue lengths NQ

ij depend on entry through its effects on the arrival rate of buses into the queue λij and the
probability of finding a bus on the queue βij , so denote this dependence implicitly.
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+ µi

∑
j

Bij −Bi


where κij , λij , µi are the multipliers on the driver route choice constraint, the queue time constraint, and
the adding up constraint respectively. The necessary first order at an optimum are

κij
T

tQij + tTij
n̄− λijt

Q
ij

∂ ln tQij
∂pij

= 0 (pijM )

ΠV
i +

1

σ

ΠV
i

Bi

∑
j

κij − µi = 0 (Bi)

−κij
1

σ

ΠV
i

Bij
− λijt

Q
ij

∂ ln tQij
∂Bij

+ µi = 0 (Bij)

Bi =
∑
j

κij (ΠV
i )

λij − κij
ΠV

i

tQij + tTij
= 0 (tQij)

Optimal Prices. Combining first order conditions (pijM ) and (tQij) yields

T

tQij + tTij
n̄−

tQij

tQij + tTij
ΠV

i

[∣∣∣∣∣∂ ln sijM∂pij

∣∣∣∣∣+ NQ
ij

1 +NQ
ij

∂ lnNQ
ij

∂pij

]
︸ ︷︷ ︸

∂ ln t
Q
ij

∂pij

= 0

When the association raises prices on route ij, it increases profits for each driver by the number of
tickets it expects to sell on a day (captured by the first term). But it also increases the time each bus
spends in the queue as the arrival rate of passenger falls (captured by the second term). This happens
both because higher prices cause fewer passengers to arrive each period thus lowering the departure
rate of buses from the queue, as well as having effects on the equilibrium queue length. The optimal
price equates these costs and benefits, leading to a markup

pijM − cij/n̄ =
1

tQij

tQij+tTij

(
Bij

Bi

)−1/σ ∂ ln tQij
∂pij

(S14)

Prices will therefore be lower whenever queue times are more sensitive to prices, since the association
loses more revenues as a result of higher prices, adjusted for the productivity of drivers on the route
(Bij/Bi)

−1/σ.
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Optimal Entry. Combining first order conditions (Bi) and (Bij), multiplying by ρij and summing
across routes yields

ΠV
i −

∑
j

ρijλij
∂tQij
∂Bij

= 0

When the association adds an entrant, it gains its variable profits (captured by the first term). But the
entrant steals business from incumbents by increasing the time they spend queuing. Since the cost to

the association of raising queue times in route ij is captured by the multiplier λij , the term λij
∂tQij
∂Bij

is
the cost of increasing adding an entrant to route ij. The second term is therefore the expected cost of
adding a driver to the terminal, where the expectation is taken over the probability the entrant chooses
the various available routes ρij . Rearranging this condition to solve for κij and combining this with the
first order condition (ΠV

i ) yields

Bi =
σ + 1

σ

∑
j

1

1
σBij

+
tQij

tQij+tTij

∂ ln tQij
∂Bij

.

The optimal number of entrants is lower when queue times are more sensitive to the number of entrants
on each route, since entrants steal more business from incumbents.

Association Behavior Under Fixed Entry. When the overall number of entrants is fixed, the association
takes Bi as given and chooses Fi, pijM to maximize BiFi subject to the same set of constraints as above,
plus one additional constraint that ΠV

i ≥ Fi, i.e. that drivers earn non-negative profits. Solving this
problem yields exactly the same price setting condition (S14). The association also again captures driver
surplus since the non-negative profit constraint binds.

S3.1.4. Steady State Equilibrium

Queue Length. Letting BT
ij denote the number of traveling buses on route ij in steady state, the arrival

rate of buses into the queue is
λij = χij ×

[
(1− δEij)B

T
ij +Bij

]
. (S15)

Each period, 1− δEij of the traveling buses arrive at their destination and re-join the queue while Bij

entering buses also join. χij ∈ (0, 1] is a parameter that reflects a possible delay in buses arriving in
the queue.51 The exit rate from the queue is µijsijM/n̄, i.e. the arrival rate of n̄ passengers. We show in
Appendix Section S3.2.4 that in steady state, the average number of buses in the queue is given by

NQ
ij =

[
µijsijM
χijλijn̄

− 1

]−1

. (S16)

This shows how greater entry from minibus drivers will tend to increase queue lengths (and queue times)
through λij . While greater demand through µijsijM will tend to reduce queue lengths by increasing

51This is introduced to ensure a finite queue length in equation (S16).
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the departure rate from the queue, it will also have an effect on arrival rates λij through the number of
entrants.

Entry. Our assumption for long-run equilibrium in the market is that the number of entrants Bi is
determined by free entry. Under free entry, Bi adjusts to affect queue times until

ΠV
i − Fi = 0 ∀i (S17)

We assume this determines the initial equilibrium prior to public entry, and impose this in the equilib-
rium definition below.

The model can also accommodate a fixed number of entrants, and we impose this assumption to
evaluate the changes in surplus from the policy given we do not observe driver exit (Table 4). We view
this as a medium-run response with exit potentially following in the long-run (in which case we would
impose the free entry condition in the post-entry equilibrium once more).

Traveling Buses. In steady state, the number of traveling buses leaving the state BT
ijδ

A
ij must equal the

inflows µijsijM/n̄, so that52

BT
ij =

µijsijM

n̄δAij
. (S18)

Equilibrium Definition. Given model parameters {γ, η, αm, θ; n̄, c
d, χ, σ, T} and data {µij , tTij , dij}, an

equilibrium is a vector {sijm, Ūij , ρij ,Πi, t
W
ij , t

F
ij , t

Q
ij , pij , N

Q
ij , λij , Bi, B

T
ij} such that i) commuter surplus and

mode choices satisfy (S4), (S5) ; ii) driver surplus and route choices satisfy (S9), (S10); iii) equilibrium waiting
and queue times satisfy (S6), (S7), and (S8); iv) prices satisfy association optimality (S14) and v) equilibrium
queue lengths, arrival rates of buses into the queue, the entry rate and number of traveling buses satisfy steady
state conditions (S15), (S16), (S17) and (S18).

S3.2. Additional Results and Derivations

S3.2.1. Derivation of Commuter Value Functions

We derive the value function on a single route, and so omit dependency of variables on route ij. We
begin by solving for utility of a traveler who has chosen to travel via minibus. When this traveler arrives
at the origin there is either a bus waiting or not. If there is a waiting bus, the passenger boards and waits
for it to depart. If not, the passenger waits for one to arrive, enters it, and waits for it to depart.

Value Function for Waiting Passengers. With probability β there is a bus waiting. As shown in
Appendix Section S3.2.3, the expected number of passengers waiting in the bus is n̄/2. We want to solve
for the value of joining a bus with this number of passengers already on board.

52This last term is the probability a bus in the queue has n̄− 1 passengers 1/n̄ times the probability an additional passenger
shows up µijsijM
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Let UB(n) be the value of arriving at a bus with n < n̄ passengers in it. A commuter waiting at a
bus stop incurs a per-period wait cost of −η. Since the bus leaves when it has n̄ passengers, if there are
n̄− 2 passengers on the bus she boards, the commuter waits until one additional passenger arrives. The
value function is therefore

UB(n̄− 2) = −η + µsMU
T + (1− µsM )UB(n̄− 1)

= −η 1

µsM
+ UT ,

where UT is the value of being on a traveling bus, and 1/µsM is the expected time for an additional
passenger to join the waiting bus.

The value of arriving at a bus with n̄− 3 passengers on it is therefore

UB(n̄− 3) = −η 1

µsM
+ UB(n̄− 2)

= −η 2

µsM
+ UT

Continuing, the expected value of arriving when there is a waiting bus (which has n̄/2 = n̄ − n̄/2

passengers on it) is

UB = −ηtF + UT

where tF =
1

µsM

( n̄
2
− 1
)

is the expected time it takes for the bus to fill n̄/2− 1 passengers under passenger arrival rate µsM .
With probability 1− β there is no bus waiting when they arrive. One arrives at Poisson rate λ. The

value of arriving when there is no bus waiting is therefore

UNB = −η + λŨB + (1− λ)UNB

= −ηtW + ŨB

where tW ≡ 1/λ is the expected time to wait for a bus to arrive, and ŨB is the value of the passenger
being able to load the bus after waiting tW periods, at which point there are µmtW passengers waiting.
We know that if µmtW > n̄, then the bus departs immediately. We will show later this is satisfied in
steady state, so ŨB = UT . Therefore

UNB = −ηtW + UT .

Value Function for Traveling Passengers. A traveling bus arrives according to a Poisson process with
parameter δA. While traveling, passengers pay the time cost −η. If they arrive, they receive a payoff
y−p consisting of their earnings for the day net of the price of the fare, which they value with parameter
γ. Their value function is therefore

UT = −η + δA(γ(y − p)) + (1− δA)UT
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= −ηtT + γ(y − p)

where tT = 1/δA is expected travel time on the route.

Expected Value Function. Using these results to compute the expected value from traveling by
minibus Um = (1− β)UNB + βUB , and adding back the dependency of variables on route, we find that

UijM = γy − γpijM − ηtijM

where tijM = tTijM + (1− βij)t
W
ijM + βijt

F
ijM︸ ︷︷ ︸

t̄WijM

where tTijM = 1/δAij is expected travel time, and t̄WijM is the expected time the passenger waits at the
bus queue until they depart. This consists of tWijM = 1/λij , the expected wait time when no bus is on
queue when the passenger arrives, and tFijM = 1

µijsijM

(
n̄
2 − 1

)
, the expected time for the bus to fill and

depart if there is one on the queue when the passenger arrives. Note that the endogenous probability
βij = λijn̄/µijsijM is derived in Appendix Section S3.2.4.

S3.2.2. Derivation of Minibus Driver Value Functions

We derive the value function on a single route, and so omit dependency of variables on route ij.

Value Functions, Traveling Buses. When traveling, a bus arrives at its destination with probability δA.
If it arrives, it exits the model with probability δE . With probability 1− δE it returns to the start of the
queue at the route origin. We also allow for drivers to have a time cost c when traveling or queuing. The
value function of a traveling minibus is therefore

V T = −c+ δA(1− δE)V Q + (1− δA)V T

= −ctT + (1− δE)V Q.

Value Functions, Queuing Buses. Consider a bus joining a queue with N buses. Departures from
the queue occur at rate µsM/n̄ since each bus waits to fill to capacity n̄ before departing. Using the
recursion

V Q(N) = −c+ µsM
n̄

V Q(N − 1) + (1− µsM
n̄

)V Q(N)

= − cn̄

µsM
+ V Q(N − 1)

allows us to solve for the value of joining a queue with N buses as a function of being at the front of the
queue V Q(0) as

V Q(N) = −c Nn̄
µsM

+ V Q(0) (S19)
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This is intuitive, as Nn̄
µsM

is the expected time it takes to for the queue of length N to clear.
Once at the top of the queue, the bus starts from zero waiting passengers. Let V Q(0, n) be the value

of being at the top of the queue with n waiting passengers in the vehicle. Then V Q(0) = V Q(0, 0) which
satisfies the recursion

V Q(0, 0) = −c+ µsMV
Q(0, 1) + (1− µsM )V Q(0, 0)

= − c

µsM
+ V Q(0, 1)

V Q(0, 1) = − c

µsM
+ V Q(0, 2)

...

V Q(0, n̄− 1) = − c

µsM
+ pn̄− cM + V T

The last line says that once the bus has one vacant seat left, it pays the cost to wait the expected amount
of time 1/µsM for one more passenger to arrive, gets the fares from passengers pn̄, pays the lump sum
monetary cost of travel cM , and gains the value from becoming a traveling bus.

Solving this recursion yields V Q(0) = pn̄− cM − c
µsM

+ V T . Substituting this, and the expression for
V T into (S19) allows us to express the value of joining a queue on ij as

V Q
ij =

1

δEij
×
[
pijn̄− cij − c(tQij + tTij)

]
where tQij =

n̄

µijsijM
(NQ

ij + 1)

Note that queue time tQij is an endogenous object which depends on the length of the queue in steady
state NQ

ij , and we replace cM with cij to match the notation in the text.
Note that 1/δEij is the expected number of trips the driver expects to make in a day. Appendix Section

S3.2.5 shows that if we assume a finite workday length without driver exit, we get exactly the expression
above for the value of entry into a route, with T/(tQ + tT ) instead of 1/δEij premultiplying the per-trip
profit function. This is because in a workday of length T , since each trip takes tQ + tT , drivers make
exactly T/(tQ + tT ) trips in a day. We therefore parameterize δEij = (tQij + tTij)/T to deliver this same
expression. The overall value of joining a queue is then

V Q
ij =

T

tQij + tTij︸ ︷︷ ︸
N

Trips
ij

×
[
pijn̄− cij − c

(
tQij + tTij

)]
︸ ︷︷ ︸

πij

which depends on the number of trips drivers expect to make in a day, times the profits per trip.
Finally, since the time cost of queuing is already captured through its effect on the number of trips,

we assume c = 0 to deliver the final expression for the value function used in the text.
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S3.2.3. Distribution of Passengers Waiting on a Bus

The probability distribution pn of the number people n waiting evolves according to

ppassn,t+dt = ppassn,t (1− µijsijMdt) + ppassn−1µijsijMdt.

In steady state this becomes ppassn = ppassn−1 ,which implies a uniform distribution, so

ppassn =

 1
n̄ if n ≤ n̄

0 otherwise.

Therefore the expected number of passengers waiting on a bus if there is one in the queue is n̄/2.

S3.2.4. Derivation of Steady State Queue Length

This section characterizes equilibrium queue lengths. We again suppress dependence on route ij. The
arrival rate of buses into the queue is

λ = χ×
[
(1− δE)BT +B

]
where BT , B are the number of traveling and entering buses in steady state and χ ∈ (0, 1] is a parameter
that reflects a potential delay in buses arriving into the queue. The exit rate from the queue is µsM/n̄.
The Kolgomorov Forward Equation describing the distribution βn of the number of buses n is then

β0,t+dt = β0,t (1− λdt) + β1,t
µsM
n̄

dt

βn,t+dt = βn+1,t
µsM
n̄

dt+ βn−1,tλdt+ βn,t

(
1− λdt− µsM

n̄
dt
)

∀ n > 0

Letting dt→ 0 we get

β1 =
λn̄

µsM
β0

0 = (βn+1 − βn)
µsM
n̄

+ (βn−1 − βn)λ

Solving this recursively, we find

βn = ξnβ0 where ξ ≡ λn̄

µsM

Since this is a probability distribution, we find β0 from the normalization

β0

∞∑
n=0

ξn = 1 ⇒ β0 = 1− ξ

Note β0 also provides the probability of commuters finding zero buses on the queue needed to compute
expected wait times for passengers, where we define in the paper the probability of finding a bus in the
queue as βij ≡ 1− β0,ij .
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The average number of buses in the queue ij is then

NQ
ij =

∞∑
n=0

n(1− ξij)ξ
n
ij =

ξij
1− ξij

=

[
µijsijM
λijn̄

− 1

]−1

where we have used
∑∞

n=0 nξ
n = ξ ∂

∂ξ

∑∞
n=0 ξ

n in the second equality. Note these results require
λijn̄ < µijsijM , which is why we include the delay parameter χij ∈ (0, 1].

S3.2.5. Alternative Value Function in Finite Time

This section solves driver value functions under a finite work day length. The aim is to microfound the
exit probability (which governs the average work day length, and number of trips each driver expects
to make, in the main model).

A workday has a finite length T . We first characterize the value functions of traveling buses. In a
small period of length dt, traveling buses pay a time cost cdt, and arrive with probability δAdt (in which
case they immediately return to the start of the queue, otherwise they continue traveling). The value
function is then

V T (t) = −cdt+ (1− δAdt)V T (t+ dt) + δAdtV Q(t+ dt).

Subtracting V T (t) from both sides, dividing by dt and letting dt→ 0 yields

V T (t) = −tT
[
c− V̇ T (t)

]
+ V Q(t)

where tT = 1/δA is expected travel time, and V̇ T (t) ≡ ∂V T (t)/∂t. In words, the value of traveling
is the time cost (both the length of the trip itself, plus the reduction in work time), plus the value of
rejoining the queue after the trip is complete. We again consider a single route and drop the notational
dependence of variables on ij.

In equilibrium, a queue has length NQ. In the main text, the expected time to leave the queue is
tQ(NQ) = n̄

µsM
(NQ + 1). We therefore consider a simplified process where the bus departs the queue

with probability δQ = µsM/(n̄(N
Q + 1)) giving the same expected time in the queue. The value of

joining the queue is therefore

V Q(t) = −cdt+ δQdt
[
pn̄− cM + V T (t+ dt)

]
+ (1− δQdt)V Q(t+ dt),

where cM is again the lump sum monetary cost of the trip. Subtracting V Q(t) from both sides, dividing
by dt and letting dt→ 0 yields

V Q(t) = pn̄− cM − tQ
[
c− V̇ Q(t)

]
+ V T (t)

At the end of the period, the value of joining the queue is zero so V Q(T ) = 0. The system of equations
is then

V T (t) = −tT
[
c− V̇ T (t)

]
+ V Q(t)
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V Q(t) = pn̄− cM − tQ
[
c− V̇ Q(t)

]
+ V T (t)

V Q(T ) = 0

Guess and Verify. We guess the value functions take the form

V Q(t) = αQ + βQ(T − t)

V T (t) = αT + βT (T − t)

where the dependence of V Q on N , which is constant in equilibrium, is absorbed in the coefficients.
Then V̇ T (t) = −βT and V̇ Q(t) = −βQ. Plugging this into these two equations gives

αT + βT (T − t) = −tT
[
c+ βT

]
+ αQ + βQ(T − t)

αQ + βQ(T − t) = pn̄− cM − tQ
[
c+ βQ

]
+ αT + βT (T − t)

Equating coefficients we get βT = βQ = β, and substituting this in and doing the same for the α shifters
yields

αT = −tT [c+ β] + αQ

αQ = pn̄− cM − tQ [c+ β] + αT

Substituting the second into the first yields

0 = pn̄− cM − tT [c+ β]− tQ [c+ β]

β =
pn̄− cM − ctT − ctQ

tT + tQ

The boundary condition implies αQ = 0, which delivers a final expression for

αT = −tT [c+ β]

These conditions collectively verify the guess. Putting these together delivers the functional form for
the value of joining a queue at time t = 0 as

V Q(0) =
T

tT + tQ︸ ︷︷ ︸
NTrips

×
[
pn̄− cM − c(tT + tQ)

]︸ ︷︷ ︸
πPerTrip

where NTrips ≡ T
tT+tQ

is the number of trips the driver can make in a period of length T . As in Section
S3.2.2, we simplify by assuming c = 0.
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S3.2.6. Derivation of Change in Consumer Surplus

We first compute the change in welfare on a single route, dropping the dependence on ij. Consumer
surplus is given by

Ū =
1

γθ
ln

(
1 +

∑
m∈M

exp (αm − θηtm − θγpm)

)
where we impose the normalization of the utility of the outside option We want to know how this
changes after mode P is added to the set of available modes which become M′ = M∪ {P}.

The change in consumer surplus is given by

∆CS =
1

γθ
ln

(
1 + exp (αM − θηt′M − θγp′M ) + exp (θuP )

1 + exp (αM − θηtM − θγpM )

)
=

1

γθ
ln

(
1 + exp (αM − θηt′M − θγp′M )

1 + exp (αM − θηtM − θγpM )
+

exp (θuP )

1 + exp (αM − θηtM − θγpM )

)
=

1

γθ
ln

(
1 + exp (αM − θηt′M − θγp′M )

1 + exp (αM − θηtM − θγpM )
+

exp (θuP )∑
n∈M′ exp (u′n)

∑
n∈M′ exp (θu′n)

1 + exp (αM − θηtM − θγpM )

)

=
1

γθ
ln

(
1 + exp (αM − θηt′M − θγp′M )

1 + exp (αM − θηtM − θγpM )
+ s′P exp

(
γθ
(
CS′ − CS

)))
=

1

γθ
ln

(
s0 +

exp (αM − θηtM − θγpM )

1 + exp (αM − θηtM − θγpM )

exp (αM − θηt′M − θγp′M )

exp (αM − θηtM − θγpM )
+ s′P exp (γθ∆CS)

)
=

1

γθ
ln
(
s0 + sM exp (−θη∆tM − θγ∆pM ) + s′P exp (γθ∆CS)

)
exp (γθ∆CS) = s0 + sM exp (−θη∆tM − θγ∆pM ) + s′P exp (γθ∆CS)

exp (γθ∆CS) =
1

1− s′P
[s0 + exp (−θη∆tM − θγ∆pM )]

⇒ ∆CS =
1

γθ
ln

[
1

1− s′P
× [s0 + exp (−θη∆tM − θγ∆pM )]

]
Summing across all routes gives the change in aggregate surplus

∆CS =
∑
ij

µij

[
1

γθ
ln

(
1

1− s′ijP

)
+

1

γθ
ln (sij0 + exp (−θη∆tijM − θγ∆pijM ))

]
.

S3.2.7. Computing General Equilibrium Counterfactuals

We begin by showing the system of equations that characterize equilibrium. In the initial equilibrium
we impose the free entry condition, but in the system of equations governing the change in equilibrium
variables in response to public entry we will take the number of entrants to be held fixed as explained
in Section S3.1.4.

Equilibrium Definition. Given model parameters {γ, η, αm, θ; n̄, cij , χij , σ, T} and data {µij , tTij , Fi},
an equilibrium is a vector {sijM , tWij , tFij , λij , t

Q
ij , pij , N

Q
ij , B

T
ij , Bij , Bi, Ūij} such that
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sijM =
exp (αM − θηtijM − θγpijM )∑
n∈M exp (αn − θηtijn − θγpijn)

tWij = 1/λij

tFij =
1

µijsijM

( n̄
2
− 1
)

λij = χij

[
(1− δEij)B

T
ij +BE

ij

]
tQij =

n̄

µijsijM
(NQ

ij + 1)

NQ
ij =

[
µijsijM
χijλijn̄

− 1

]−1

pijM − cij/n̄ =
1

tQij

tQij+tTij

(
Bij

Bi

)− 1
σ

[
γ(1− sijM ) +

NQ
ij

1+NQ
ij

∂ lnNQ
ij

∂pij

]
BT

ij =
µijsijM t

T
ij

n̄

Bij = Bi ×

(
N trips

ij × [pijM n̄− cij ]
)σ

∑
k

(
N trips

ik × [pikM n̄− cik]
)σ

0 = Γ

(
σ − 1

σ

)[∑
k

(
N trips

ik × [pikM n̄− cik]
)σ]1/σ

− Fi

Ūij =
1

θ
ln

(
1 +

∑
m∈M

exp (αm − θηtijm − θγpijm)

)

where tijm, δEij , βij , N
trips
ij are auxiliary variables

tijM = tTijM + (1− βij)t
W
ij + βijt

F
ij

δEij =
tQij + tWij

T

βij =
χijλijn̄

µijsijM

N trips
ij =

T

tQij + tTij

The partial elasticity
∂ lnNQ

ij

∂pij
in the optimal price formula is also a function of equilibrium objects and

parameters

∂ lnNQ
ij

∂pij
=
(
NQ

ij + 1
)
γ(1− sijM )

1− (1− δEij)
µijsijM tTij

n̄

(1− δEij)
µijsijM tTij

n̄ +Bij

− 1

χij

[
(1− δEij)

µijsijM tTij
n̄ +Bij

] σBij(1−Bij)

γ(1− sijM )

∂Bij

∂pijM



OA.27



where
∂Bij

∂pijM
= σBij(1−Bij)

 n̄

pij n̄− cij
− 1

tQij + tTij

(tQij)
2

n̄ µij

(
1− χij(1− δEij)t

T
ij

)
1 +

(tQij)
2

n̄ σBij(1−Bij)
1

tQij+tTij

γ(1− sijM )sijM


General Equilibrium Counterfactuals. We now show how the equilibrium system of equations can
be used to compute the impacts of government entry. The shock to this system is the market share of
the government entrant s′ij in the post-entry period.

Letting x̂ ≡ x′/x denote the relative change in a variable x between the pre- and post-entry period,
the system of equilibrium equations (assuming the number of entrants at each terminal is fixed) can be
rewritten as

ŝijM =
exp (−θη∆tijm − θγ∆pijm)

(1− sijm) + sijm exp (−θη∆tijm − θγ∆pijm)
×
[
1− s′ijP

]
t̂Wij = λ̂−1

ij

t̂Fij =
1

ŝijM

λ̂ij = πλij
̂(1− δEij)B̂

T
ij + (1− πλij)B̂ij

B̂T
ij = ŝijM

t̂Qij =
N̂Q

ij + 1

ŝijM

N̂Q
ij + 1 =

1− ξij

1− ξij ξ̂ij

ξ̂ij =
λ̂ij
ŝijM

B̂ij =

(
N̂ trips

ij

)σ [
p̂ijMπ

rev
ij + πrevij − 1

]σ
∑

k ρik

(
N̂ trips

ik

)σ [
p̂ikMπ

rev
ik + πrevik − 1

]σ
∆pijM = pijM (p̂ijM − 1)

where

πλij =
(1− δEij)B

T
ij

(1− δEij)B
T
ij +Bij

∆tijm = πTij + (1− πTij)
[
πWij

̂(1− βij)t̂
W
ij + πFij β̂ij t̂

F
]

πTij =
tTijM
tijM

πWij =
(1− βij)t

W
ij

(1− βij)tWij + βijtFij

πFij =
βijt

F
ij

(1− βij)tWij + βijtFij
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β̂ij =
λ̂ij
ŝijM

̂(1− βij) =
1− βij β̂ij
1− βij

δ̂Eij =
tQij

tQij + tWij
t̂Qij +

tWij

tQij + tWij
t̂Wij

N̂ trips
ij =

[
tQij

tQij + tTij
t̂Qij +

tTij

tQij + tTij

]

ρij =

(
N trips

ij × [pijM n̄− cij ]
)σ

∑
k

(
N trips

ik × [pikM n̄− cik]
)σ

p̂ijM =
pijM − cij/n̄

pijM
̂pijM − cij/n̄+

cij/n̄

pijM

̂pijM − cij/n̄ =
1

t̂Qij
̂
tQij+tTij

(
B̂ij

B̂i

)− 1
σ

 γ(1−sijM )

γ(1−sijM )+
N

Q
ij

1+N
Q
ij

∂ lnN
Q
ij

∂pij

̂1− sijM +

N
Q
ij

1+N
Q
ij

∂ lnN
Q
ij

∂pij

γ(1−sijM )+
N

Q
ij

1+N
Q
ij

∂ lnN
Q
ij

∂pij

N̂Q
ij

1+NQ
ij

∂̂ lnNQ
ij

∂pij


This system of equations would allow us to use the model to compute full general equilibrium counter-
factuals. However they also elucidate why the model’s many interactions restrict its ability to deliver
clear comparative statics.

S3.2.8. Testing Profit Equalization Across Treated and Connected Routes

Our empirical results show queue lengths and prices change on treated and connected routes. We use
results from the driver survey to argue this is due to route substitution by drivers. This section uses the
model to test whether the empirical results on treated and connected routes are consistent with average
profit equalization across routes.53

Taking logs of equation (5) and substituting in its components, we have

log(V Q
ij ) = log(T )− log(tTij + tQij) + log(pijM n̄− cijM )

We next take differences and simplify using first order approximations to get

d ln(V Q
ij ) ≈ −

tQij

tQij + tTij
d ln(tQij) + πrijMd ln(pijM )

≈ −
tQij

tQij + tTij

[
NQ

ij

NQ
ij + 1

d ln(NQ
ij )− d ln(µijsijM )

]
+ πrijMd ln(pijM ).

Here we use that d ln(T ) = d ln(n̄) = d ln(tTij) = 0 given that none of minibus workdays, minibus

53We thank Gabriel Kreindler for this suggestion. We also note we are abstracting from the Fréchet adjustment for the
idiosyncratic term, and are thus looking at the change in the common commponent of profits.
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occupancy or road speeds respond to the policy. In the first line we use the approximation log(tTij+t
Q
ij) ≈

tQij

tQij+tTij
d ln(tQij) since d ln(tTij) = 0. In the second line, we take a first order expansion of queue times

tQij =
n̄

µijsijM
(NQ

ij + 1) from equation (S8) to deliver the substitution in the second line. Recall also that
πrijM is the ratio of gross to net driver revenue defined in the text.

From Appendix Table S2 we can approximate the baseline time spent in queues
tQij

tTij+tQij
= 0.424, and

the inverse profit margin πrijM = 3.36 based on reported income and expenses broken down by day.

The mean queue length of 4.75 yields
NQ

ij

NQ
ij+1

= 0.83. This yields a model-implied (first order) change in

profit of

d log(V Q
ij ) ≈ −0.42

(
0.83 · d log(NQ

ij )− d log(µijsijM )
)
+ 3.36 · d log(pijM ). (S20)

We compute this object for both treated and spillover routes using the specifications in even columns
of Table 5 via seemingly unrelated regression. Appendix Table S27 shows the results. The change in
profits are remarkably similar, with a reduction of 0.376 log points on treated routes and 0.334 log points
on connected routes. Despite the relative precision with which these objects are estimated, we fail to
reject their equality (p-value 0.78). This supports the model mechanism of driver sorting across routes
until profits are equalized.

S3.3. Additional Details on Quantification

Implementing the sufficient statistics approach for the welfare change of commuters and minibus
drivers in (10) and (11) requires measuring three sets of objects.

S3.3.1. Descriptive Statistics

First, we require a collection of descriptive statistics (sijM , πrevij , Bi, ρij , µij , s
′
ijP ). We estimate the pre-

entry minibus market share using the 2009 Lagos Travel Survey which yields a minibus share of trips
at sijM = 0.56.54 Driver profit margins πrevij are measured directly in our driver surveys, yielding an
average value of 3.3.

Our welfare decomposition in (11) requires data only from terminals where the public system
operates, as we argue there are no effects on routes where public transit is unavailable at either endpoint.
We construct our measures of Bi, ρij in two steps: first, by estimating key inputs within our baseline
sample of observed routes, and then by extending these inputs to all routes at treated terminals to
determine total entrants and driver share distributions.

Total Entrants Bi. Using baseline driver survey data, we regress log daily trips on log trip distance to
estimate daily trips per driver per route NTripsPerDriverPerDay

ij = exp
(
α̂+ β̂ lnDistij

)
as a function of its

distance, where hats denote estimated values. We then estimate total minibus daily trips per route by

54This statistic considers all modes, while the 62% mentioned elsewhere excludes walking. In the driver survey, we ask total
revenue collected on the last working day as well as the income the driver earned after paying all fees and expenses. πrev

ij is
the ratio of the two.
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summing bus departures within our three observation windows and applying two adjustments. First,
since these windows capture only part of the day, we scale up based on e-ticketing data, which indicates
that 40% of weekday trips occur during the observation windows. We assume the same distribution
across times of day applies to minibus trips. Second, we account for “sole” trips—those not originating
from terminals—estimated at 21% of driver trips based on survey data. Total daily trips by drivers are
thus computed as TotalDriverTripsij =

1
0.4×0.79 × ObservedTripsij . Since TotalTripsij is the product of

the number of drivers on ij and their expected daily trips, we recover the number of drivers on a route
ij at baseline from

NDrivers
ij =

TotalDriverTripsij
N

TripsPerDriverPerDay
ij

. (S21)

This measure includes only routes covered in our route observation survey, which may not capture
all routes at a terminal. For terminals with public service which are in our observation survey sample,
we use our network census to measure the number of treated routesNi,Treat and the number of connected
routesNi,Connected. We use the measure ofNDrivers

ij from above to compute the average number of drivers
on treated routes N̄Drivers

i,Treat and connected routes N̄Drivers
i,Connected, allowing us to compute total entrants as:

Bi = Ni,Treat × N̄Drivers
i,Treat +Ni,Connected × N̄Drivers

i,Connected.

For terminals with public service not covered in our survey sample, we use an observation we conducted
for all routes in the network census immediately following the route mapping to compute the total
number of drivers using (S21). For these terminals, Bi =

∑
j N

Drivers
ij . Ideally, we would measure total

entrants for these routes at baseline rather than relying on 2022 network census data. However, the
two measures are highly correlated (correlation coefficient 0.96) for terminals included in both datasets,
suggesting this approach is reliable.

Distribution of drivers ρij . Since treatment effects are constant across treated and connected routes,
we only need to measure the fraction of drivers at terminals with public entry who operate on treated
routes; the remainder operate on connected routes. For terminals with public service included in our
observation survey sample, we compute this directly as sDriver

i,Treat = Ni,Treat × N̄Drivers
i,Treat /Bi. We then regress

the share of treated drivers on the share of treated routes for these terminals (R2 = 0.71) and use the
fitted values to predict the treated driver share at terminals with public service that are not in our survey
sample, based on the share of their routes that are treated (which we observe in the network census).
Altogether, this delivers ρDriver

i,Treat =
∑

j∈Treatedi
ρij and ρDriver

i,Connected = 1 − ρDriver
i,Treat. These are the terms we

need to estimate the change in driver surplus.55

Post-entry public share s′ijP . A fraction 1− sij0 of travelers use public transit. In the pre-entry period,
we measure sijM = 1− sij0 directly from the Lagos Travel Survey. For the post-entry period, we know

55Since treatment effects are constant on treated and connected routes, the change in surplus at treated terminals is

Π̂V
i =

[
ρDriver
i,Treat

(
N̂

Trips
Treat

)σ [
p̂Treatπ

rev
ij + 1− πrev

ij

]σ
+ ρDriver

i,Connected

(
N̂

Trips
Connected,i

)σ [
p̂Connected,iπ

rev
ij + 1− πrev

ij

]σ]1/σ
where changes on connected routes can differ by terminal due to the number of open public routes at that terminal.
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that
s′ijP = 1− sijM ŝijM − sij0ŝij0 (S22)

where hats denote relative changes. This equation highlights how the post-entry public market share
depends on shifts in the share of the outside option—i.e., whether trips on the new public system
substitute for minibus trips or come from other sources.

To estimate ŝij0, we differentiate the expression for total trip,s Nijt = N0
ijt +NTransit

ijt , which says
that total trips are comprised of those on transit (private and public) and the outside option. Assuming
that the total number of trips is unchanged (i.e. the new public system does not generate entirely new
trips), differentiating this expression yields

ŝij0 = exp

(
−1− sij0

sij0

d lnNTransit
ijt

dOpenij

)

Estimating the change in the share of users choosing the outside option therefore requires knowing the
elasticity of the total number of transit passengers to public entry. Table S28 shows that total transit trips
(minibus and public transit combined) increase by 0.149 log points (standard error 0.088) after public
transit opens on a route. Using this, we compute ŝij0 from the equation above.

Finally, we estimate ŝijM = exp
(
d lnPassijM

dOpenij

)
using our main specification but with log passengers

as the outcome and find an elasticity of -0.298 (standard error 0.153). Substituting these values into
(S22), we obtain a post-entry public share of s′ijP = 0.193.

Traveler arrival rates µij . The total number of trips µij is the sum of trips on public transit µijs′ijP and
private transit µijs′ijM , adjusted for the outside option, from the identity

µij(1− s′ij0) = µijs
′
ijP + µijs

′
ijM

⇒ µij =
µijs

′
ijP + µijs

′
ijM

1− s′ij0
(S23)

We measure daily public transit trips µijsijP ′ as the average number of daily trips from the e-ticketing
data for each route. To estimate daily trips on the private system, µijsijM ′, we first sum total private
trips on each route as recorded in our network census observation survey, conducted immediately after
the 2022 network mapping. We then apply three adjustments to scale these numbers to daily totals.
First, we account for the fact that only 40% of public trips occur during our observation windows. We
assume the same distribution across times of day applies to minibus trips. Second, we adjust for the 21%
of trips that are “sole” and do not originate from terminals. Third, we correct for passenger boardings
along the route rather than at the origin, based on GPS tracking data collected by enumerators during
network mapping, which indicates that 92% of passengers along a route board at the origin terminal.

We therefore compute total minibus passenger trips as

µijs
′
ijM =

1

0.4× 0.79× 0.92
× ObservedPassTripsij
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Plugging in µijs′ijM , µijs′ijP and our estimate of 1− s′ij0 outlined in the previous section allows us to
compute passenger arrival rates µij using (S23).

S3.3.2. Policy Elasticities

We require estimates of the changes in minibus prices (∆pijM , p̂ijM ), commuter wait times (∆tijM ) and
driver daily trips (N̂Trips

ij ) in response to public entry. These come from our reduced form results.
We find no effects on minibus departures on connected routes, and so define a change in commuter

wait times only on treated routes equal to ∆tijM = t̄ijM × 0.16, where t̄ijM is the average initial wait
time on treated routes and 0.16 = −∂ lnDepij

∂Openij
is minus one times the elasticity of departures to public

entry from column (7) of Table 5. Under Poisson departures, this corresponds to minus one times the
elasticity of wait times to public entry.

We set price changes on treated and connected routes based on the spillover specification results
from column (4) of Table 5. On treated routes, p̂ij = −0.108, while on connected routes, p̂ij = −0.016×
NumConnectedRoutesi, where NumConnectedRoutesi is the number of connected routes at terminal i.
The change in prices is then ∆pijM = p̄ijM p̂ij , where p̄ijM is the average initial fare, measured separately
for treated and connected routes.

We set the relative change in the number of trips per driver to N̂
Trips
ij = 0.84, based on column

(1) of Table 4 (0.84 = 1 − 1.55/9.58). For connected routes, the coefficient in the continuous spillover
specification in Table 6 is highly imprecise, while the dummy spillover specification in Table S20 is more
precise and larger in magnitude. Observation surveys indicate no change in departures but an increase
in queue lengths on connected routes, suggesting a decline in trips per driver. Given this collective
evidence, we allow trips per driver on connected routes to decrease and set the change to 24.6% of the
decline on treated routes, based on the ratio of coefficients on treated and connected routes in Panel B of
Table S20 (0.246 = −1.45/− 0.36).

S3.3.3. Commuter and Driver Preference Parameters

Estimation of commuter preference parameters θ, η, γ is described in the main text.
We estimate the driver route choice elasticity σ using the responsiveness of route choice to the profit

shock represented by public entry. The fraction of drivers choosing route ij in terminal i depends on its
profits relative to other routes from the terminal:

ρij =
(
V Q
ij /Π

V
i

)σ
We know that

σ =
1

1− ρij

∂ ln ρij

∂ lnV Q
ij

=
1

1− ρij

∂ ln ρij/∂Openij

∂ lnV Q
ij /∂Openij

,

and therefore estimate σ by combining our reduce form elasticities that tell us how public entry changed
profits and entry decisions on different routes.

To compute the expression in the numerator, we pool routes in each treated terminal into two groups:
those which receive public service by the end of the driver survey and those which do not. We do this to
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increase the number of drivers in each cell. We then look, within each terminal, at the change in drivers
choosing routes which receive public service through the regression

ln ρict = γic + δit + βOpenict + ϵict

where i is a terminal, c is a category (those which receive public service by the end of the survey for
which Openict = 1 in the endline survey), and t = 0, 1 indicates the baseline and endline surveys
respectively. This elasticity is therefore identified from the increase in route switching for drivers who
drive treated routes at baseline, between the baseline and endline surveys (to try and capture the
long-run response). We find an estimate of β = ∂ ln ρij/∂Openij of -0.377 (0.131) when estimating in
logs and -0.277 (0.082) when estimating using PPML.

To compute the expression in the denominator, we differentiate equation (5) to get

∂ lnV Q
ij

∂Openij

=
∂ lnNTrips

ij

∂Openij

+ πrevij

∂ ln pij
∂Openij

As in the prior step, we use our within-terminal results from Table 4 to measure these elasticities, using
∂ lnNTrips

ij

∂Openij
= ln((9.58− 1.55)/9.58) = −0.1765 and set ∂ ln pij

∂Openij
≈ 0 from that table. We also measure that

E
[

1
1−ρij

]
= 1.29.

Putting these results together, we arrive at

σ = E

[
1

1− ρij

]
∂ ln ρij/∂Openij

∂ lnV Q
ij /∂Openij

= 1.27× −0.377

−0.177
= 2.77.

using our OLS estimate of ∂ ln ρij/∂Openij , and σ = 2.04 when using the PPML estimate.

Appendix S4. Additional Empirical Results

S4.1. Testing for the Presence of Higher-Order Spillovers

The spillover specifications in the paper remain valid only if our measure of connections capture all
spillovers from treated to untreated routes. In other words, there should be no “higher-order” spillovers
beyond interactions at origin or destination terminals.

To test this, we run an augmented version of our spillover regression

Yrtτ =βI{Openrt}+ α Connections to public transitrt
+ γUnconnected overlap with public transitrt + γm(rτ) + ηt

′Xrt + ϵrtτ .

This specification includes a term that measures the fraction of each control route (“unconnected”
with public transit at both endpoints) that overlaps with a public transit route at each survey date. To
construct this measure, we intersect the shapefile of each minibus route with a 50-meter buffer around
each public transit route that opens during our sample period. We then use the opening dates of each
public transit route to calculate the fraction of each minibus route that overlaps a public route at each

OA.34



survey date. We construct this measure only for routes that are in the control group of the spillover
specification, i.e. those which do not share any connection with public transit at either endpoint; for
treated and connected routes it is set to zero.

Our goal is to test whether minibus routes in the control group are affected by the treatment. We
do this in two ways. First, we test whether impacts on control routes are the same regardless of their
overlap with the public system (γ = 0). Second, we examine whether the treatment effect estimate (β)
changes when this overlap measure is included. If treatment affects control routes through the overlap
measure we construct, and this overlap influences outcomes in the control group, this SUTVA violation
would introduce an omitted variable bias that would cause the estimate of β to change.

The results are presented in Appendix Table S29. Column (1) repeats the main spillover specification,
column (2) adds controls for the fraction of each route overlapping with different road types (motorway,
main, secondary) since new public routes are more likely to enter on busier roads, and column (3)
includes the overlap variable for unconnected routes.

First, we fail to reject γ = 0 for each of the three outcomes. However, the estimates are relatively
noisy, and for two outcomes—fares and queues—the point estimates are non-negligible compared
to the main treatment effect. To further investigate, we turn to the second test: examining whether
the coefficient on the treatment variable (Openrt) changes when the overlap variable is included. We
find that the coefficients are statistically indistinguishable between these specifications, and the point
estimates are remarkably consistent across outcomes.

Taken together, we interpret this evidence to suggest that the primary effects from new public transit
openings occur at endpoints. This supports the validity of our spillover specifications and suggests that
their estimates do not seem influenced by possible violations of SUTVA.

Appendix S5. Additional Figures

FIGURE S3. Google Mobility Data: Visits to Transit Stations
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FIGURE S4. Oyingbo Public Terminal: Fire and Aftermath

A. Fire B. Aftermath

FIGURE S5. Participant Checking in for Wait Experiment
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FIGURE S6. Event Study of Public Transit Entry

A. Minibus Departures

B. Minibus Fares

C. Minibus Driver Queues

Note: Each panel reports coefficient estimates from a regression which replicates the main specification (column (7) of Table 2)
but replaces the singular Open

rt
with a set of quarter-to-treatment dummies which reflect the quarter of observation relative

to the quarter of opening. Blue points report coefficients and 95% confidence intervals from a TWFE regression, while red
points represent those from the Sun and Abraham (2021) estimator.
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Appendix S6. Additional Tables

TABLE S2. Minibus Drivers

Mean SD N

Demographics

Age (years) 43.40 0.31 849

Male 0.993 0.00 849

Has secondary education 0.611 0.02 849

Driving experience (years) 12.65 0.34 847

Operations

Own bus 0.509 0.02 847

Choose own route 0.846 0.01 849

Number of routes plied 1.185 0.02 849

Proportion of trips skipping terminal start (‘sole’) 0.209 0.01 849

Number of days worked last week 5.622 0.04 849

Number of trips on last day worked 9.201 0.21 849

Hours between start and end of work on last day worked 112.13 0.12 849

Proportion of work time spent driving 0.576 0.01 847

Proportion of work time spent queuing 0.424 0.01 847

Income and Costs

Last day worked

Total revenue from all trips (₦) 17269.4 403.71 811

Net income (₦) 5140.1 103.88 818

Cost of fuel (₦) 3766.1 54.91 846

Fees paid to the association (₦) 691.0 52.29 849

Employed conductor 0.306 0.02 843

If employed conductor, amount paid (₦) 2531.4 69.49 237

If do not own vehicle, amount paid to the minibus owner (₦) 5972.8 148.27 410

Last month

Had a repair 0.919 0.01 844

If had a repair, cost of last repair (₦) 11538.8 944.63 769

Had a fine 0.830 0.02 480

If had a fine, cost of last fine (₦) 6505.6 732.02 376

One-time

Average terminal registration fee (₦)* 15494.13 7486.50 67

Notes: Survey of minibus drivers, sampled in queues and outside terminals. All statistics are weighted to account
for differential ease of sampling those waiting in queues, as described in Section S1.1. Proportion of work
time spent driving and queuing is based on responses to trip diary, based on the first 8 trips on the last day
worked. Number of trips and total revenue are winsorized at 99th percentile due to the presence of large outliers.
*Average terminal registration fee is the current registration fee reported using a terminal survey, for terminals
where drivers in the sample are registered, hence the smaller sample since this is recorded at the terminal-level.
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TABLE S3. Effect of Public Transit on Private Transit: Dynamic

(1) (2) (3) (4) (5) (6) (7)

Panel A: log(Departures)

Open < 3 months -0.079** -0.119*** -0.113** -0.115** -0.117** -0.161** -0.084
(0.038) (0.034) (0.045) (0.047) (0.056) (0.071) (0.076)

Open 3-6 months -0.133* -0.241*** -0.237** -0.259*** -0.252** -0.253** -0.287**
(0.068) (0.079) (0.098) (0.093) (0.099) (0.098) (0.121)

Open >6 months -0.152 -0.217** -0.218* -0.226* -0.225** -0.257* -0.355***
(0.132) (0.105) (0.114) (0.119) (0.109) (0.145) (0.112)

Panel B: log(Fare)

Open < 3 months -0.045 -0.064 -0.047 -0.055 -0.053 -0.063 -0.017
(0.043) (0.054) (0.054) (0.053) (0.055) (0.056) (0.044)

Open 3-6 months -0.019 -0.028 -0.016 -0.040 -0.049 -0.049 -0.014
(0.041) (0.046) (0.050) (0.046) (0.046) (0.030) (0.031)

Open >6 months -0.022 -0.056 -0.047 -0.074 -0.082 -0.090 -0.047
(0.093) (0.091) (0.093) (0.092) (0.088) (0.071) (0.074)

Panel C: log(Queues)

Open < 3 months -0.064 -0.080 -0.063 -0.048 -0.042 -0.057 -0.001
(0.119) (0.143) (0.120) (0.120) (0.124) (0.115) (0.090)

Open 3-6 months -0.442*** -0.486*** -0.459*** -0.473*** -0.459*** -0.494*** -0.514***
(0.067) (0.088) (0.057) (0.061) (0.073) (0.065) (0.087)

Open >6 months -0.240 -0.374** -0.364** -0.393*** -0.371** -0.375** -0.475***
(0.191) (0.148) (0.150) (0.144) (0.147) (0.167) (0.160)

Route X Period FE X X X X X X X
Day of Week X Survey Round FE X X X X X X X
Hour of Dep X Survey Round FE X X X X X X X
Terminal X Survey Round FE X X X X X X
Trip Dist Controls X Survey Round FE X X X X X
Dep. Plan X Survey Round FE X X X X
CBD Controls X
O & D Lat-Lon Poly X Survey Round FE X
O & D LGA X Survey Round FE X

Notes: Standard errors clustered by route and terminal reported in parentheses. N and R2 rows omitted for brevity. * p<0.1; ** p<0.05;
*** p<0.01.

OA.39



TABLE S4. Response to a Price Change in Public System: Dynamic

(1) (2)

Price Impact ≤14 days (₦: ζ1) 91.0832*** 91.0832***
(4.925) (5.5768)

Price Impact 15-28 days (₦: ζ2) 89.6402*** 89.6402***
(5.1617) (5.6865)

Price Impact 29-42 days (₦: ζ3) 88.9993*** 88.9993***
(5.2662) (5.7557)

Log Trip Impact ≤14 days (α1) -0.2327*** -0.2569***
(0.0394) (0.0549)

Log Trip Impact 15-28 days (α2) -0.2115*** -0.2534***
(0.0367) (0.0714)

Log Trip Impact 29-42 days (α3) -0.1632*** -0.223***
(0.0317) (0.0853)

Price Sensitivity ≤14 days (log trips/₦: α1
ζ1

) -0.0026*** -0.0028***
(0.0005) (0.0007)

Price Sensitivity 15-28 days (log trips/₦: α2
ζ2

) -0.0024*** -0.0028***
(0.0005) (0.0009)

Price Sensitivity 29-42 days (log trips/₦: α3
ζ3

) -0.0018*** -0.0025**
(0.0004) (0.001)

Trips detrended X

N 13466 13466

System R2 0.9402 0.9402

Notes: Fare and log trips effects estimated jointly in a seemingly unrelated regression around the 7 November 2023 price
change, including route and day of week fixed effects. Ratio of effects computed from these individual estimates. Specifications
also include an indicator for 6 November 2023 (the single day where the subsidy was entirely removed). In the detrended
specification, a linear time trend in the trips measure is estimated on the pre-period; this trend is then removed from all
periods. Standard errors in parentheses estimated via bootstrapping the entire procedure, resampling routes with replacement.
* p<0.1; ** p<0.05; *** p<0.01.
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TABLE S5. Trips Price Sensitivity in Public System

(1) (2) (3) (4) (5) (6)

All changes All but first 2023-08-02 2023-11-07 2024-01-29 2024-02-26

Fare -0.0022*** -0.0017*** -0.0032*** -0.0025*** -0.0018*** -0.0004
(0.0003) (0.0003) (0.0005) (0.0004) (0.0004) (0.0004)

N 10199 7942 2257 2637 2677 2628

Nroutes 158 148 120 129 132 130

Window (days) 14 14 14 14 14 14

First stage F stat 2501.9 2146.0 7100.1 2714.8 3781.9 3998.5

R2 0.79 0.801 0.839 0.82 0.847 0.846

Notes: Instrumental variables estimates of effect of fare on log trips based on price changes on designated dates.
Instruments are indicator variables for the periods between price changes, with sample restricted to 14 days from the
nearest price change, plus an indicator for 6 November 2023 (the single day where the subsidy was removed). Regressions
include fixed effects by route, day of week, and for being within the window of each price change. Bootstrapped standard
errors in parentheses, resampling routes with replacement. * p<0.1; ** p<0.05; *** p<0.01.

TABLE S6. Wait Experiment: Alternate Estimation Strategies

(1) (2) (3)

Main Perfect Compliance Stated Preference

γ (utils/₦) 0.0025*** 0.0031*** 0.0002**
(0.0002) (0.0002) (0.0001)

η (utils/min) 0.0464*** 0.0254*** 0.0109***
(0.0031) (0.0035) (0.0013)

η
γ (₦/min) 18.9357*** 8.3295*** 46.4624**

(1.7123) (0.983) (20.4845)

σcheckin 14.3662***
(3.901)

ρ 0.5163***
(0.0588)

N 8640 4722 4398

Avg. Log Likelihood -8720.18 -2843.73 -2641.69

Notes: Left column reports the selection corrected estimates. The middle column reports
estimates from equation (S1) assuming compliance is perfect (Cnt ≡ 1 and F νcheckin

(−C) =

F (−D,−C) = 0). The right column estimates the perfect compliance specification using stated
preferences from the baseline survey. Standard errors clustered at the user level. Estimation
fixes σwait = 1. * p<0.1; ** p<0.05; *** p<0.01.

OA.41



TABLE S7. Minibus Drivers: Comparison of Weighted and Unweighted Statistics

Weighted Unweighted

Mean SD N Mean SD N

Demographics

Age (years) 43.40 0.31 849 43.69 0.30 849

Male 0.993 0.00 849 0.994 0.00 849

Has secondary education 0.611 0.02 849 0.603 0.02 849

Driving experience (years) 12.65 0.34 847 12.75 0.33 847

Operations

Own bus 0.509 0.02 847 0.514 0.02 847

Choose own route 0.846 0.01 849 0.848 0.01 849

Number of routes plied 1.185 0.02 849 1.173 0.02 849

Proportion of trips skipping terminal start (‘sole’) 0.209 0.01 849 0.170 0.01 849

Number of days worked last week 5.622 0.04 849 5.631 0.03 849

Number of trips 9.201 0.21 849 9.092 0.20 849

Total hours between start and stop on last day worked 12.13 0.12 849 12.16 0.12 849

Proportion of work time spent driving 0.576 0.01 847 0.567 0.01 847

Proportion of work time spent queuing 0.424 0.01 847 0.433 0.01 847

Income and Costs

Last day worked

Total revenue from all trips (₦) 17269.4 403.71 811 17144.6 379.90 811

Net income (₦) 5140.1 103.88 818 5167.6 103.20 818

Cost of fuel (₦) 3766.1 54.91 846 3740.1 55.23 846

Fees paid to the association (₦) 691.0 52.29 849 705.9 53.45 849

Employed conductor 0.306 0.02 843 0.295 0.02 843

If employed conductor, amount paid (₦) 2531.4 69.49 237 2551.5 66.83 237

If do not own vehicle, amount paid to the minibus owner (₦) 5972.8 148.27 410 6021.2 146.00 410

Monthly (last month)

Had a repair 0.919 0.01 844 0.923 0.01 844

If had a repair, cost of last repair (₦) 11538.8 944.63 769 11497.3 866.27 769

Had a fine 0.830 0.02 480 0.827 0.02 480

If had a fine, cost of last fine (₦) 6803.3 1011.60 376 6463.2 738.46 376

Disputes

Proportion of drivers in weekly passenger dispute 0.477 0.02 849 0.484 0.02 849

Proportion of drivers in weekly driver dispute 0.366 0.02 849 0.367 0.02 849

Notes: Survey of minibus drivers, sampled in queues and outside terminals. Except for expectations panel, statistics in the weighted panel
are weighted to account for differential ease of sampling those waiting in queues, as described in Section S1.1. 8̂1% of the drivers report
being registered at a terminal. Missing registration fees are imputed using a dataset of union registration fees by terminal.
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TABLE S8. Minibus Drivers: Awareness of Public Transit

Mean SD N

Expectations

Have heard of public transit rollout (by 2020) 0.572 (0.50) 849

If heard, correctly predicted if public transit will open on surveyed route* 0.794 (0.41) 243

If heard, expect public transit will not affect them 0.476 (0.50) 246

If heard, expect public transit to reduce their passengers 0.362 (0.48) 246

Notes: Survey of minibus drivers, sampled in queues and outside terminals. Statistics are not weighted to account for
differential ease of sampling those waiting in queues. *Calculated only for those drivers who answered and whose main
route had not yet seen the introduction of public transit. Of the 486 drivers who were aware of the public transit rollout,
34% had already seen public transit services introduced along their route by the time of the survey. The last two questions
were asked to a random 50% of the respondents who had heard of the public transit rollout.

TABLE S9. Minibus Driver Survey Observations

Number of Respondents

Baseline 854

Follow up 1 564

Follow up 2 528

Follow up 3 514

Follow up 4 423

Notes: Number of respondents for each round of
the minibus driver survey.

TABLE S10. Minibus Driver Survey Attrition

Proportion of Sample

5 Surveys 0.342

4 or more Surveys 0.550

3 or more Surveys 0.663

2 or more Surveys 0.821

1 or more Surveys 1.000

Notes: Proportion of sampled minibus drivers who re-
spond to at least given number of survey rounds, in
minibus driver survey.
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TABLE S11. Minibus Driver Survey Attrition Correlates

By driver By driver-survey-round

No follow ups Completed

(1) (2) (3) (4) (5) (6)

Log(Age) -0.143** -0.149** 0.121** 0.119**
(0.065) (0.065) (0.053) (0.053)

Own Vehicle -0.006 -0.001 0.030 0.029
(0.028) (0.028) (0.023) (0.023)

Log(Income) 0.000 -0.005 -0.026 -0.026
(0.022) (0.023) (0.019) (0.019)

Main Route Treated -0.034 -0.043 -0.005 0.006
(0.031) (0.031) (0.025) (0.026)

N 808 847 806 4,040 4,235 4,030
R2 0.01 0.00 0.01 0.01 0.00 0.00
Mean of Dependent Variable .175 .179 .174 .68 .676 .68

Notes: In columns 1 to 3, outcome is a dummy for whether the driver does not appear in any follow
up survey. Only data from the baseline is used. In columns 4 to 6, data is at the driver-survey level and
the outcome is a dummy for whether a driver completed a survey. Right hand side variables are log of
driver age, a dummy for whether they own their vehicle, log revenue on last day driving (all from the
baseline), and a dummy for whether the driver’s main route in the baseline is treated at any point in
the data. Regressions are weighted by the sampling weights discussed in Section 3.1. Standard errors
clustered by driver reported in parentheses. * p<0.1; ** p<0.05; *** p<0.01.
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TABLE S12. Baseline Average Characteristics of Private Transit Routes

Treated Connected Control Difference T-Ctd Difference T-Ctr

Receives public transit Will share endpoint No public transit

with public transit

Departures per 30 mins 4.11 3.60 3.38 0.51 0.74

(1.11) (0.27) (0.24) (0.91) (0.87)

Passengers at Departure 13.49 10.15 13.10 3.34 0.39

(1.69) (0.50) (0.62) (1.67) (2.20)

Fare (₦) 246.15 203.75 239.03 42.41 7.13

(30.62) (14.78) (11.49) (46.46) (39.12)

Distance (km) 8.61 7.50 7.91 1.11 0.70

(1.75) (0.86) (0.54) (2.71) (1.85)

Driver Queue Length 4.90 5.30 4.56 -0.40 0.34

(0.75) (0.36) (0.30) (1.14) (1.02)

Driver Queue Length > 0 0.88 0.88 0.84 -0.00 0.04

(0.08) (0.02) (0.02) (0.07) (0.08)

Number of Routes 13 123 142

F-Stat 1.26 0.41

Notes: Table reports means and standard errors of baseline characteristics for routes which received public service in our sample (Treated), those which share a node with
a route which received public service (Connected) and those which did not (Control). Fares and passenger counts are reported for routes where buses are observed in our
sample. Distance is computed on the straight line between start and end point of the route. Driver queue length is the number of buses waiting in the queue for a given
route at the beginning of each time period.

TABLE S13. Baseline Average Characteristics of Terminals

Treated Control Difference T-C

Receives public transit No public transit

Total Departures 314.60 135.96 178.63

(110.77) (17.82) (61.51)

Total Passengers across all Departures 3983.40 1292.16 2691.25

(1474.30) (178.43) (731.62)

Number of Private Transit Routes Operational 10.86 8.05 2.80

(2.51) (0.84) (2.21)

Number of Terminals 7 38

F-stat 5.26***

Notes: Table reports means and standard errors of baseline characteristics of terminals which received any public service in our sample
(Treated) and those which did not (Control).
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TABLE S14. Effect of Public Transit on Private Transit: TWFE Robustness

log(Departures) log(Fare) log(Queues)

(1) (2) (3) (4) (5) (6)

Open -0.221*** -0.203*** -0.024 -0.023** -0.289*** -0.283***
(0.075) (0.054) (0.035) (0.011) (0.072) (0.038)

N 21,284 21,284 23,067 23,067 22,290 22,290
R2 0.66 0.64 0.95 0.94 0.59 0.55
TWFE X X X
Sun and Abraham X X X

Notes: Specification is the same as column 7 of Table 2. Even columns use Sun and Abraham (2021)
estimator. Standard errors clustered by route and terminal reported in parentheses. * p<0.1; ** p<0.05;
*** p<0.01.
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TABLE S15. Effect of Public Transit on Private Transit (Linear Outcomes)

(1) (2) (3) (4) (5) (6) (7)

Panel A: Departures

Open -0.383** -0.461*** -0.461*** -0.426*** -0.426*** -0.426*** -0.649*
(0.169) (0.103) (0.103) (0.118) (0.118) (0.118) (0.365)

N 24,597 24,597 24,597 24,597 24,597 24,597 24,597
R2 0.57 0.62 0.62 0.62 0.62 0.62 0.64
Mean Outcome 3.45 3.45 3.45 3.45 3.45 3.45 3.45

Panel B: Fare

Open -4.007 -5.693 -5.693 -10.085 -10.085 -10.085 -2.518
(10.977) (13.238) (13.238) (11.965) (11.965) (11.965) (7.454)

N 23,067 23,067 23,067 23,067 23,067 23,067 23,067
R2 0.93 0.94 0.94 0.94 0.94 0.94 0.95
Mean Outcome 209.51 209.51 209.51 209.51 209.51 209.51 209.51

Panel C: Queues

Open -0.812** -1.022* -1.022* -0.940* -0.940* -0.940* -1.194*
(0.365) (0.519) (0.519) (0.544) (0.544) (0.544) (0.696)

N 24,587 24,587 24,587 24,587 24,587 24,587 24,587
R2 0.53 0.59 0.59 0.60 0.60 0.60 0.62
Mean Outcome 4.75 4.75 4.75 4.75 4.75 4.75 4.75

Route X Period FE X X X X X X X
Day of Week X Survey Round FE X X X X X X X
Hour of Dep X Survey Round FE X X X X X X X
Terminal X Survey Round FE X X X X X X
Trip Dist Controls X Survey Round FE X X X X X
Dep. Plan X Survey Round FE X X X X
CBD Controls X
O & D Lat-Lon Poly X Survey Round FE X
O & D LGA X Survey Round FE X

Notes: Standard errors clustered by route and terminal reported in parentheses. * p<0.1; ** p<0.05; *** p<0.01.
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TABLE S16. Effect of Public Transit on Private Transit: Inference Robustness

(1) (2) (3) (4) (5) (6) (7)

Panel A: log(Departures)

Open -0.114 -0.182 -0.180 -0.189 -0.186 -0.219 -0.221

p-val (clustered) 0.008 0.000 0.002 0.002 0.003 0.008 0.005

p-val (wild) 0.144 0.040 0.076 0.062 0.058 0.078 0.060

Panel B: log(Fare)

Open -0.031 -0.051 -0.037 -0.055 -0.059 -0.060 -0.024

p-val (clustered) 0.512 0.324 0.473 0.273 0.221 0.144 0.501

p-val (wild) 0.563 0.368 0.531 0.351 0.299 0.229 0.585

Panel C: log(Queue)

Open -0.228 -0.282 -0.266 -0.270 -0.254 -0.275 -0.289

p-val (clustered) 0.000 0.005 0.001 0.001 0.005 0.001 0.000

p-val (wild) 0.047 0.132 0.074 0.070 0.084 0.049 0.033

Route X Period FE X X X X X X X
Day of Week X Survey Round FE X X X X X X X
Hour of Dep X Survey Round FE X X X X X X X
Terminal X Survey Round FE X X X X X X
Trip Dist Controls X Survey Round FE X X X X X
Dep. Plan X Survey Round FE X X X X
CBD Controls X
O & D Lat-Lon Poly X Survey Round FE X
O & D LGA X Survey Round FE X

Notes: Wild p-values computed using Cameron, Gelbach, and Miller (2008).
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TABLE S17. Effect of Public Transit on Traffic Congestion

log(Speed) log(Time)

(1) (2) (3) (4)

Open 0.000 0.007
(0.023) (0.026)

Open < 3 months -0.002 0.004
(0.021) (0.024)

Open 3-6 months -0.005 0.012
(0.026) (0.027)

Open >6 months 0.008 0.005
(0.027) (0.029)

N 7,362,322 7,362,322 7,362,322 7,362,322

R2 0.63 0.63 0.86 0.86

Notes: Outcome is either log speed or log trip time. Data is from Google Maps,
standard errors clustered at the route-level (288 routes). Controls include
route fixed effects, and week-year, hour-month-year and trip distance quartile-
month-year fixed effects. * p<0.1; ** p<0.05; *** p<0.01.
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TABLE S18. Placebo Tests: Spillover Specification

(1) (2) (3) (4) (5) (6) (7)

Panel A: log(Departures)

Open -0.221*** -0.221*** -0.172** -0.161* -0.208*** -0.166** -0.158*
(0.075) (0.075) (0.067) (0.090) (0.078) (0.066) (0.091)

Open ENDSARS -0.012 0.109 0.112
(0.149) (0.146) (0.151)

Number of open routes at terminal 0.002 0.002
(0.013) (0.013)

Open cancelled 0.088 0.056 0.055
(0.078) (0.072) (0.070)

N 21,284 21,284 21,284 21,284 21,284 21,284 21,284

R2 0.66 0.66 0.63 0.63 0.66 0.63 0.63

Panel B: log(Fare)

Open -0.024 -0.024 -0.030 -0.108** -0.029 -0.034 -0.111**
(0.035) (0.035) (0.037) (0.052) (0.035) (0.038) (0.052)

Open ENDSARS 0.185* 0.068 0.050
(0.104) (0.075) (0.073)

Number of open routes at terminal -0.016*** -0.016***
(0.006) (0.006)

Open cancelled -0.036 -0.032 -0.025
(0.022) (0.020) (0.020)

N 23,067 23,067 23,067 23,067 23,067 23,067 23,067

R2 0.95 0.95 0.93 0.94 0.95 0.93 0.94

Panel C: log(Queues)

Open -0.289*** -0.289*** -0.296*** -0.160* -0.282*** -0.296*** -0.164
(0.072) (0.072) (0.054) (0.094) (0.075) (0.058) (0.098)

Open ENDSARS 0.087 0.148 0.178
(0.164) (0.171) (0.181)

Number of open routes at terminal 0.029* 0.029*
(0.017) (0.017)

Open cancelled 0.044 0.010 -0.002
(0.100) (0.100) (0.105)

N 22,290 22,290 22,290 22,290 22,290 22,290 22,290

R2 0.59 0.59 0.55 0.55 0.59 0.55 0.55

Terminal X Survey Round FE X X X

Notes: Columns (1), (2) and (5) replicate each column from Table 3. Columns (3) and (6) run the same placebo specifications for the ENDSARS
and Cancelled placebos, in the spillover specification without terminal-by-survey round fixed effects. Columns (4) and (7) then add to this the
measure of public transit connections. Standard errors clustered by route and terminal reported in parentheses. * p<0.1; ** p<0.05; *** p<0.01.
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TABLE S19. Comparison of Connectedness and Fixed Effect Specifications

(1) (2) (3) (4)

Panel A: log(Departures)

Open -0.163* -0.197** -0.232*** -0.221***
(0.090) (0.082) (0.069) (0.075)

Number of open routes at terminal 0.002
(0.013)

1-4 routes at terminal open -0.101**
(0.040)

5+ routes at terminal open -0.048
(0.069)

Any routes at terminal open -0.099**
(0.041)

N 21,284 21,284 21,284 21,284
R2 0.63 0.63 0.63 0.66
p-val: Same estimate on Open 0.40 0.67 0.76

Panel B: log(Fare)

Open -0.108** -0.082 -0.041 -0.024
(0.052) (0.050) (0.041) (0.035)

Number of open routes at terminal -0.016***
(0.006)

1-4 routes at terminal open -0.016
(0.028)

5+ routes at terminal open -0.079**
(0.031)

Any routes at terminal open -0.019
(0.027)

N 23,067 23,067 23,067 23,067
R2 0.94 0.93 0.93 0.95
p-val: Same estimate on Open 0.01 0.02 0.48

Panel C: log(Queues)

Open -0.163* -0.181** -0.291*** -0.289***
(0.093) (0.076) (0.057) (0.072)

Number of open routes at terminal 0.029*
(0.017)

1-4 routes at terminal open 0.003
(0.065)

5+ routes at terminal open 0.176*
(0.097)

Any routes at terminal open 0.011
(0.064)

N 22,290 22,290 22,290 22,290
R2 0.55 0.55 0.55 0.59
p-val: Same estimate on Open 0.21 0.16 0.97

Terminal FE X

Notes: Column 1 repeats the baseline spillover specification from odd columns in Table 5. Column 2 replaces the public transit connection
measure with two dummies that bin the number of open routes at a terminal variable from column 1 into two groups above and below 5 open
routes. Column 3 does the same with a single dummy for whether a route has any public transit connection (i.e. whether Number of open
routes at terminal is greater than zero). Column 4 repeats the main specification with terminal by survey round fixed effects (from column 7
of Table 2). The last row of each panel reports p-value from a hypothesis test of equality between the coefficient on Open in each spillover
specification with the specification with terminal by survey round fixed effects in column (4). Standard errors clustered by route and terminal
reported in parentheses. * p<0.1; ** p<0.05; *** p<0.01.
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TABLE S20. Driver Robustness

N Trips log(AvgFare) Log(Trip Fee) log(Rev) log(DaysWork) Change Route Change Route

Any Same Terminal

(1) (2) (3) (4) (5) (6) (7)

Panel A: Unweighted Spillover Specification

Open -1.052* -0.072** -0.024 -0.130** -0.006 0.075* 0.152***
(0.558) (0.036) (0.064) (0.054) (0.029) (0.043) (0.051)

Number of routes open at terminal -0.053 -0.004 0.000 -0.017* -0.006 0.006 0.021**
(0.074) (0.004) (0.008) (0.010) (0.004) (0.007) (0.008)

N 2,173 2,011 2,026 1,966 2,178 1,405 1,405

R2 0.71 0.84 0.73 0.70 0.40 0.79 0.75

Panel B: Spillover Dummy Specification

Open -1.451*** -0.045 0.005 -0.138** -0.014 0.094** 0.147***
(0.526) (0.033) (0.055) (0.059) (0.039) (0.038) (0.052)

Any routes at recruitment terminal open -0.357 0.007 0.042 -0.054 -0.035 0.032 0.056*
(0.325) (0.025) (0.056) (0.035) (0.031) (0.025) (0.030)

N 2,177 2,015 2,030 1,970 2,182 1,411 1,411

R2 0.71 0.84 0.73 0.69 0.41 0.80 0.75

Notes: Panel A replicates the main spillover Table 6 without sampling weights. Panel B replicates it using a dummy for whether the route has any public transit connections as the
connection measure. Standard errors clustered by driver and recruitment terminal reported in parentheses. * p<0.1; ** p<0.05; *** p<0.01.

TABLE S21. Does Supply Respond to Price Changes in Public System?

(1) (2) (3) (4) (5) (6)

All changes All but first 2023-08-02 2023-11-07 2024-01-29 2024-02-26

Fare -0.0002*** -0.0001 -0.0005*** -0.0006*** -0.0002 0.0009***
(0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0002)

N 10199 7942 2257 2637 2677 2628

Nroutes 158 148 120 129 132 130

Window (days) 14 14 14 14 14 14

First stage F stat 2501.9 2146.0 7100.1 2714.8 3781.9 3998.5

R2 0.869 0.881 0.919 0.918 0.927 0.917

Notes: Instrumental variables estimates of effect of fare on log buses based on price changes on designated dates. Instru-
ments are indicator variables for the periods between price changes, with sample restricted to 14 days from the nearest
price change, plus an indicator for 2023-11-6 (the single day where the subsidy was removed). Regressions include fixed
effects by route, day of week, and for being within the window of each price change. Bootstrapped standard errors in
parentheses, resampling routes with replacement. * p<0.1; ** p<0.05; *** p<0.01.
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TABLE S22. Wait Time Game Descriptives

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

min mean std median max count corr(gameLength) corr(zeroWaitDays) corr(sCheckin) corr(sWaitMean) corr(tWaitMean)

Baseline

Gender 0.0 0.47 0.5 0.0 1.0 640.0 -0.01 0.04 -0.06 0.03 -0.06

Age 18.0 36.88 12.75 35.0 78.0 640.0 0.01 -0.02 -0.02 0.04 -0.06

Education Category 1.0 5.12 0.94 5.0 7.0 640.0 0.01 -0.01 -0.07 -0.0 -0.01

Monthly Income (₦) 12500.0 61289.43 79331.78 37500.5 750000.0 640.0 0.06 -0.05 0.04 -0.02 0.01

Game

Game Length (weeks) 3.0 3.46 0.67 3.0 5.0 640.0 1.0 0.01 -0.01 -0.28 0.16

Number of Initial Zero Wait Days 1.0 1.48 0.5 1.0 2.0 640.0 0.01 1.0 -0.06 0.06 -0.1

scheckinn (₦) 200.0 550.94 290.05 400.0 1000.0 640.0 -0.01 -0.06 1.0 -0.04 -0.01

sn (₦) 69.12 285.75 80.14 285.98 640.0 640.0 -0.28 0.06 -0.04 1.0 -0.11

∆tn (min) 4.4 8.72 1.59 8.65 13.85 640.0 0.16 -0.1 -0.01 -0.11 1.0

Cn 0.0 0.59 0.34 0.69 1.0 640.0 -0.13 -0.03 0.1 0.41 -0.23

Dn 0.0 0.41 0.28 0.39 1.0 640.0 -0.21 -0.05 0.01 0.43 -0.23

Endline

Expected sn (₦) 10.0 1411.06 4959.46 1000.0 100000.0 575.0 -0.01 -0.08 -0.06 -0.1 0.05

Expected ∆tn (min) 1.0 10.63 7.85 10.0 59.0 575.0 -0.05 -0.08 -0.02 -0.03 0.03

Notes: Individuals selected an income category; we designate an individual’s monthly income as the median income for the category chosen. ‘corr’ reports the correlation between the designated column and row variables. Individuals were
assigned to possibly different game lengths (weeks) and initial days with zero wait (zeroWaitDays). Variables include check in offer scheckinn =sCheckin, average wait offer payment sn=sWaitMean, average wait offer duration ∆tn=tWaitMean (in
minutes), proportion of days checked in Cn, and proportion of wait offers accepted Dn. Endline asks about participants’ expectations about wait offers (both payment sn and duration ∆tn).
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TABLE S23. Wait Experiment: Alternate Utility Specifications

(1) (2) (3)

Main Income Heterogeneity Curvature in Wait Time

γ (utils/₦) 0.0025*** 0.0025*** 0.0022***
(0.0002) (0.0002) (0.0002)

η (utils/min) 0.0464*** 0.0723***
(0.0031) (0.0086)

ηH (utils/min) 0.0507***
(0.0028)

ηL (utils/min) 0.0447***
(0.0038)

ηSquaredWait -0.0012***
(0.0004)

η
γ (₦/min) 18.9357***

(1.7123)
ηH

γ (₦/min) 20.6187***
(1.6831)

ηL

γ (₦/min) 18.1737***
(1.9662)

σcheckin 14.3662*** 14.35*** 12.3846***
(3.901) (3.9145) (3.5069)

ρ 0.5163*** 0.5168*** 0.68***
(0.0588) (0.0591) (0.0705)

N 8640 8640 8640

Avg. Log Likelihood -8720.18 -8718.71 -8715.92

Notes: ηH represents the coefficient for above median income; ηL for below. Standard errors clustered at
the user level. Estimation fixes σwait = 1. * p<0.1; ** p<0.05; *** p<0.01.
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TABLE S24. Wait Experiment Robustness

(1) (2) (3) (4)

Main Omit Nontravel Days† Exclude First Checkins Include Early User-Days

γ (utils/₦) 0.0025*** 0.0024*** 0.0026*** 0.0025***
(0.0002) (0.0002) (0.0002) (0.0002)

η (utils/min) 0.0464*** 0.0465*** 0.0426*** 0.0389***
(0.0031) (0.0031) (0.0036) (0.0022)

η
γ (₦/min) 18.9357*** 19.4297*** 16.4055*** 15.7436***

(1.7123) (1.7821) (1.6209) (1.224)

σcheckin 14.3662*** 10.3003*** 36.0153 46.3072
(3.901) (2.1381) (26.3611) (34.0152)

ρ 0.5163*** 0.5551*** 0.3839*** 0.5234***
(0.0588) (0.0608) (0.0644) (0.0419)

N 8640 7886 7880 17291

Avg. Log Likelihood -8720.18 -8024.04 -7955.94 -16700.48

Notes: The second column (†) omits days in the first week that participants told us they did not plan to travel (based on the baseline
survey), and days in the last week that participants told us they did not travel (based on the endline). These are likely to represent a subset
of the days that participants did not travel. The third column excludes the first checkins which had an optimistic offer. The fourth column
includes even users who faced an early version of the design, as described in Section S2.2. Standard errors clustered at the user level.
Estimation fixes σwait = 1. * p<0.1; ** p<0.05; *** p<0.01.
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TABLE S25. Wait Experiment Robustness: Check in Time

(1) (2) (3)

Offer: Second checkin no wait 10.424* 10.286* 6.149
(5.732) (5.758) (9.046)

Offer: Second/third checkin generous 11.712*** 11.489***
(4.175) (4.266)

Offer: Stable distribution 10.305*** 9.330*
(3.920) (4.786)

Day 0.120
(0.343)

Sample All checkins All checkins Second checkin

N 5494 5494 535

R2 0.609 0.609 0.038

Day of Week FE X X X

Individual FE X X

Start Date FE X

Notes: The outcome is check in time, in minutes since midnight. In the first two columns, the omitted
category is the first day offer with no wait. In the third column, the omitted category is the generous
offer. The third column omits 11 cases who received the stable distribution rather than the generous
distribution on their second day. * p<0.1; ** p<0.05; *** p<0.01.
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TABLE S26. Wait Experiment: Arrival Dependent Waiting

(1) (2) (3) (4) (5) (6) (7) (8)

Main
λ=150.0 dep/30 min

(Headway Q1)
λ=23.7 dep/30 min

(Headway Q10)
λ=6.7 dep/30 min
(Headway Q50)

λ=2.1 dep/30 min
(Headway Q90)

λ=1.5 dep/30 min
(Headway Q95)

λ=0.8 dep/30 min
(Headway Q99)

λ=0.1 dep/30 min

γ (utils/₦) 0.0025*** 0.0025*** 0.0025*** 0.0026*** 0.0028*** 0.003*** 0.005 0.0037***
(0.0002) (0.0007) (0.0007) (0.0006) (0.0006) (0.0007) (0.0042) (0.001)

η (utils/min) 0.0464*** 0.0464*** 0.0462*** 0.0444*** 0.0559*** 0.0702*** 0.2401 1.3901
(0.0031) (0.0032) (0.0032) (0.0034) (0.0064) (0.0126) (0.2719) (1.1064)

η
γ (₦/min) 18.9357*** 18.9357*** 18.7826*** 17.3052*** 20.0311*** 23.6811*** 47.8999*** 373.1481*

(1.7123) (4.8738) (4.7944) (3.8734) (3.1467) (3.0303) (14.8144) (202.1312)

σcheckin 14.3662*** 14.3662 14.4355 15.4013 17.0815 18.0341 28.6195 12.4344
(3.901) (37.0444) (37.3864) (41.0838) (44.2656) (49.8159) (162.9444) (15.6073)

ρ 0.5163*** 0.5163** 0.5082** 0.4078** 0.279* 0.2547* 0.0766 -0.1498
(0.0588) (0.2162) (0.2151) (0.1953) (0.1537) (0.1507) (0.4023) (0.1376)

N 8640 8640 8640 8640 8640 8640 8640 8640

Avg. Log Likelihood -8720.18 -8720.18 -8719.66 -8722.11 -8725.67 -8722.87 -8688.93 -8769.74

Notes: In columns after the first, participants also accept the wait offer if no bus arrives during the wait time. We simulate bus departures following a Poisson process with average rate λ departures per half hour Standard
errors clustered at the user level. Estimation fixes σwait = 1. * p<0.1; ** p<0.05; *** p<0.01.
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TABLE S27. Testing Equality of the Change in Profits on Treated and Connected Routes

Treated Connected

∆ ln(V Q
ij ) -0.376** -0.334***

(0.177) (0.090)

P-value T==C 0.777

Notes: Table reports values for change in profits on treated and connected routes using
equation (S20) via seemingly unrelated regression with standard errors clustered by
terminal. The last row reports a p-value for the test of equality. See Appendix Section
S3.2.8 for details.

TABLE S28. Total Passenger Elasticity

(1)

Open 0.149*
(0.088)

N 6,041

R2 0.65

Notes: Outcome is log total number of passengers (summed across minibus and public bus) per hour on each route in each
of our 3 time periods across multiple year-months. Specification includes fixed effects for each unit of observation (route
by time period), as well as year-month fixed effects, and year-month fixed effects interacted with fixed effects for terminals,
trip distance quartiles, LGA of origin, and LGA of destination. Standard errors clustered by route and terminal reported in
parentheses.
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TABLE S29. Testing Higher-Order Spillovers through Public Transit Overlap on Control Routes

(1) (2) (3)

Panel A: log(Departures)

Open -0.163* -0.170 -0.168
(0.090) (0.102) (0.106)

Number of connected routes 0.002 0.007 0.007
(0.013) (0.012) (0.013)

Unconnected overlap with public bus route 0.034
(0.311)

N 21,284 21,189 21,189
R2 0.63 0.63 0.63
p-val Overlap==0 0.914
p-val Open (2)==(3) 0.912

Panel B: log(Fare)

Open -0.108** -0.091* -0.094**
(0.052) (0.048) (0.047)

Number of connected routes -0.016*** -0.013** -0.014**
(0.006) (0.005) (0.006)

Unconnected overlap with public bus route -0.058
(0.107)

N 23,067 22,959 22,959
R2 0.94 0.94 0.94
p-val Overlap==0 0.591
p-val Open (2)==(3) 0.610

Panel C: log(Queues)

Open -0.163* -0.198* -0.202*
(0.093) (0.109) (0.112)

Number of connected routes 0.029* 0.037** 0.036*
(0.017) (0.018) (0.018)

Unconnected overlap with public bus route -0.068
(0.383)

N 22,290 22,182 22,182
R2 0.55 0.56 0.56
p-val Overlap==0 0.859
p-val Open (2)==(3) 0.861

Road Type Intersections X Survey Round FE X X

Notes: Table reports regression from Appendix Section S4.1. Road Type Intersections measure the fraction of each minibus
road that overlap different road types (motorway, main, secondary). Column (3) adds the fraction of each control route that
overlaps the public system at each survey round. P-val Overlap==0 tests whether the coefficient on this overlap variable is
zero. P-val Open (2)==(3) tests whether the coefficient on Open is the same in columns 2 and 3.
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TABLE S30. Welfare Effects of Introducing Public Transit (Wild Inference)

Individuals Aggregate

($/individual/day) ($mn/month)

Treated Connected

Panel A: Commuters Number: 252,004 919,579 1,171,583

Baseline surplus from private transit 0.86 0.86 24.01
[0.67,1.19] [0.67,1.19] [18.76,33.13]

Effect of introducing public transit +0.20 +0.01 +1.47
[0.13,0.30] [-0.00,0.03] [0.78,2.30]

Direct benefit of public transit +0.22 0 +1.33
[0.17,0.31] [1.04,1.83]

Additional impact from private ∆departures -0.04 0 -0.26
[-0.08,-0.00] [-0.50,-0.02]

Additional impact from private ∆prices +0.02 +0.01 +0.41
[-0.01,0.05] [-0.00,0.03] [0.58,0.90]

Panel B: Minibus Drivers Number: 1,800 10,040 11,840

Baseline surplus from private transit 11.87 11.87 2.97
[9.01,13.36] [9.01,13.36] [2.25,3.34]

Effect of introducing public transit -2.98 -2.98 -0.75
[-4.38,-0.31] [-4.38,-0.31] [-1.10,-0.08]

Accounting for private ∆departures, ignoring route switching -2.35 0 -0.09
[-3.90,-0.17] [-0.15,-0.01]

Accounting for private ∆departures and ∆prices, ignoring route switching -4.76 0 -0.18
[-7.53,-0.90] [-0.29,-0.03]

Additional impact of allowing route switching +1.78 -2.98 -0.57
[-0.01,3.12] [-1.10,-0.08] [-0.83,-0.05]

Panel C: Public Bus Drivers Number: 1,640 0 1,640

Wages - - +0.21

Panel D: Costs

Operating costs (buses) - - +2.15
Operating costs (terminals) - - +0.11

Notes: Confidence intervals are reported using the same bootstrap procedure as Table 8, but using standard deviations for the changes in times and fares that equal the wild
bootstrapped standard errors from the corresponding regressions (Table S16, column (7)).
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TABLE S31. Welfare Effects of Introducing Public Transit: Robustness

(1) (2) (3) (4) (5)

Baseline σ PPML 25% Lower θ 25% Higher θ 25% Higher η

Panel A: Commuters, Individual ($/day)

Treated Routes

Effect of introducing public transit 0.20 0.20 0.27 0.15 0.19

Direct benefit of public transit 0.22 0.22 0.29 0.18 0.22

Additional impact from private ∆departures -0.04 -0.04 -0.04 -0.04 -0.05

Additional impact from private ∆prices 0.02 0.02 0.02 0.02 0.02

Connected Routes

Direct benefit of public transit 0 0 0 0 0

Impact from private ∆prices 0.01 0.01 0.01 0.01 0.01

Panel B: Commuters, Aggregate ($mn/month)

Effect of introducing public transit 1.47 1.47 1.91 1.21 1.41

Direct benefit of public transit 1.33 1.33 1.77 1.06 1.33

Additional impact from private ∆departures -0.26 -0.26 -0.26 -0.26 -0.33

Additional impact from private ∆prices 0.41 0.41 0.41 0.41 0.41

Panel C: Minibus Drivers, Individual ($/day)

Effect of introducing public transit -2.98 -3.00 -2.98 -2.98 -2.98

Panel D: Minibus Drivers, Aggregate ($mn/month)

Effect of introducing public transit -0.75 -0.75 -0.75 -0.75 -0.75

Notes: Robustness exercises of the results in Table 8, under alternative assumptions for parameters in the column headings.
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