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1 Introduction

The values behind policy decisions are not always transparent. When governments

decide which households receive welfare benefits, or universities select which students

to admit, they do not always articulate a rationale behind those decisions. Even when

a rationale is given for a policy, it may be difficult to verify. In particular, certain

people may be prioritized either because they are expected to benefit the most from

the policy, or because they are favored, irrespective of how much they are likely to

benefit. This distinction has important implications (Nichols and Zeckhauser, 1982;

Coate and Morris, 1995): all members of society may agree on a ranking of who

benefits most along some objective metric, but may disagree on how much welfare

weight to assign to different entities.

This paper develops a method to infer social preferences that are consistent with

observed or proposed policies. This method involves first obtaining estimates of

heterogeneity in treatment effects (who benefits the most), and then, in a second

stage, separating those from implied welfare weights (who is valued) and how different

outcomes are valued, given the policy’s allocation. This approach makes it possible to

shift the debate from one about means — who should receive what — to one about

ends: what are the impacts we desire, and which populations are most important?

We consider a common form of policy, in which some treatment is allocated based

on a score or ranking. The allocation could be based on poverty scores in the case of

welfare programs, or explicit rankings in the case of applicants for college admission

or small business grants. We show that the ranking implies a set of inequalities that

can be used to back out the implied value that it places on different outcomes and

different entities. Our method can also be used if one only observes the binary decision

of who is eligible and who is not.

Intuitively, if a policy allocates benefits to one type of entity who benefits little

from the allocation, rather than to a different type that benefits greatly, that suggests

the policy implicitly places higher welfare weight on the first type. Or, if a policy

consistently allocates to applicants whose health improves as a result of the intervention

— instead of applicants whose consumption increases — that implies the policy implicitly

highly values health.

To illustrate how this method can be used to interrogate a real-world policy,
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we apply it to historical data from PROGRESA, one of the world’s largest (and

best-studied) anti-poverty programs. We first estimate the heterogeneous treatment

effects of the program. Consistent with prior work, we find evidence of treatment

effect heterogeneity — for instance, that indigenous households benefit most from the

program (cf. Djebbari and Smith, 2008). Our main estimates use OLS but we also

demonstrate alternative methods for estimating treatment effects (Wager and Athey,

2018).

We then use our method to estimate the preferences consistent with the observed

ranking of households and its heterogeneous effects on consumption, child health,

and school attendance. We find that indigenous households were more likely to be

allocated the program, but because they benefit so much more, the policy does not

actually implicitly place higher welfare weight on them, and if anything is consistent

with assigning them lower welfare weights than non-indigenous households. Our

results also suggest that the program’s design is consistent with assigning extra value

to poorer, larger, and less educated households. These valuations, estimated using our

method, are similar to the stated preferences of Mexican residents, as measured by

hypothetical allocation questions in a survey we conducted in 2023. We additionally

recover estimates of how the policy implicitly values impacts on consumption, health,

and schooling. While a utilitarian policy would defer to the choices made by households,

a paternalistic policy may attempt to override these preferences — if, for example, it

preferred that parents made different choices for their children. Our estimates strongly

reject non-paternalism, suggesting the policy values these outcomes differently from

household decision makers. This preference for paternalism is echoed in the responses

of Mexican residents.

Our final set of empirical results illustrate how this approach can further be used

to evaluate counterfactual policies and preferences. In the PROGRESA case, we show

what would have occurred had the program designers placed higher value on certain

types of impacts (e.g., health vs. education) or certain types of households (e.g.,

equal welfare weights). This analysis suggests that, for instance, a policymaker who

cared exclusively about impacts on schooling should prefer a policy that prioritizes

richer households; a policymaker that valued only consumption impacts would instead

prioritize indigenous households. More broadly, we show where these counterfactual
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policies lie relative to the Pareto frontier that characterizes improvements across the

three focal welfare outcomes.

After presenting the empirical results, we discuss more general settings where

our approach may be useful. This framework can be used retrospectively, to audit

existing programs and elucidate the values they imply, thereby facilitating more critical

discussion of implemented policies. However, it can also be used prospectively, to

help ensure that future policies better reflect the preferences of policymakers and

constituents, thus providing a sort of decision aid to imperfectly rational policymakers.

We demonstrate both uses in the case of PROGRESA. In both settings, the main

requirements are that (i) there exists a way to estimate how different entities would be

affected by the policy, and (ii) that the policy designer can articulate which household

characteristics should be permitted to influence preferences. The former is a practical

issue: treatment effect heterogeneity is most easily estimated when a randomized

control trial facilitates impact evaluation on a subset of the population, as might

occur with a pilot study, but could in principle be obtained through non-experimental

approaches (e.g., Kent et al., 2020; Johansson et al., 2018). The latter is more subtle,

as it entails considerations both theoretical (e.g., the values of constituents) and

empirical (i.e., to permit identification). In particular, the full application of our

method requires an exclusion restriction that there exist characteristics that describe

heterogeneity but which do not directly enter the preferences of the policy, though we

show variants of the method that do not require an exclusion restriction.

Taken as a whole, this approach makes it possible to invert the discussion about

policies and programs. Rather than debate the means of the policy (who is eligible,

how large are the benefits?), this framework makes it possible to debate the ends

(how much do we value health, education, or consumption? Should poor families be

prioritized over middle class families?). The framework can be applied to a wide range

of settings where policymakers allocate scarce resources and heterogeneous treatment

effects can be estimated.

Related Literature

This paper contributes to literature on optimal targeting and taxation (Nichols

and Zeckhauser, 1982; Barr, 2012; Fleurbaey and Maniquet, 2018), including work
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comparing targeted policies to universal basic income (Alatas et al., 2012; Hanna and

Olken, 2018). It can be viewed as a response to Ravallion (2009), which argues that

targeting poverty directly may not be sufficient for impact, and suggests that it may

be better to target based on desired outcomes. In that sense, our work relates closely

to Haushofer et al. (2022), which asks how targeting on treatment effects compares

to targeting on baseline poverty. Their empirical analysis suggests that those who

are most impacted by a Kenyan cash transfer are not always the poorest. Our paper

focuses on the inverse problem of estimating the welfare function consistent with an

observed policy. The two approaches are thus complementary; ours also extends from

a specified utility function defined over a single outcome to a general welfare function

that can rationalize targeting based on household characteristics as well as impacts

on multiple outcomes. Our empirical results also engage with research on the effects

and allocation of cash transfer programs (Behrman and Todd, 1999; Skoufias et al.,

2001a; Gertler, 2004; John Hoddinott, 2004; Coady, 2006; Djebbari and Smith, 2008;

Alderman et al., 2019). We build on this work by showing how effects can be used to

audit policymaker priorities, and improve the design of future policies.

Our approach also relates to a growing literature that takes a given welfare function

as fixed, and considers what are the best decisions to take. Kitagawa and Tetenov

(2018) computes optimal assignment of treatment with experimental data, and Athey

and Wager (2020) with observational data. Gechter et al. (2019) assesses how well

different ex ante treatment assignments maximize a given welfare function under ex

post experimental data. Wang (2020) considers the theoretical problem of allocating

resources given heterogeneous aid agency preferences over individuals, and describes

allocation queues as a solution to a combinatorial problem. This literature faces

a central problem: what notion of welfare do, or should, societies maximize? Our

paper takes a step towards answering this question, by solving the reverse problem:

estimating welfare functions consistent with observed decisions.

It is increasingly common to construct indices summarizing multiple outcomes

as a more nuanced measure of welfare (Greco et al., 2019). A persistent question in

assembling these indices is what weight to apply to each component. These weights

have economic meaning: how valuable is one component relative to another? Common

approaches are geometric: setting equal values to each component (UNDP, 1990),
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or analyzing how components vary together in observational data, using a principal

component analysis (Filmer and Pritchett, 2001; McKenzie, 2005). We derive weights

that have an economic interpretation using revealed preferences, how policies implicitly

make trade-offs. A related approach is to set weights to optimally predict some gold

standard measure of utility, if one is available (Jayachandran et al., 2021).

Also related is a recently expanding ‘inverse optimum’ public finance literature

that estimates the redistributive preferences that are consistent with observed income

tax policies. Bourguignon and Spadaro (2012) and Hendren (2020) infer the weight

on different households implied by a tax schedule, based on the distortions required

to transfer them resources. Saez and Stantcheva (2016) generalize welfare weights to

reconcile popular notions of fairness with optimal tax theory. That literature considers

tax policies that condition on a single covariate (pre-tax income) and affect a single

outcome (net-of-tax consumption). Our paper generalizes this approach to arbitrary

allocation policies that may condition on a vector of covariates and affect a vector of

outcomes. This richer space allows us to back out additional information: how welfare

weights depend on a vector of attributes, and the relative value placed on different

outcomes (such as consumption, health, or education). It also shows how these welfare

questions can be raised across a broad set of domains where heterogeneous treatment

effects can be estimated.

More broadly, our efforts also connect with recent computer science scholarship

on fairness in machine learning (cf. Dwork et al., 2012; Barocas et al., 2018). Several

papers in this literature study the social welfare implications of algorithmic decisions,

and how social welfare concerns relate to different notions of fairness (Ensign et al.,

2017; Hu and Chen, 2018; Mouzannar et al., 2018; Liu et al., 2018). This relates

to work on multi-objective machine learning (Rolf et al., 2020). Kasy and Abebe

(2020) describe limitations of fairness constraints, and suggest that algorithms should

be optimized for impacts. Also related, Noriega et al. (2018) discuss how different

constraints to targeting can impact efficiency and fairness. Our approach is distinct,

however, in that we show how using machine learning tools can be used to better

characterize and audit the values consistent with a program’s observed allocation.

We hope that by providing increased visibility into these revealed preferences, future

policies can be better aligned with stated preferences and explicit policy objectives.
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2 Model

We consider the problem of allocating treatment among N entities, which could be,

for example, households, individuals, firms, or regions. For convenience, we refer to

entities as households.

A policy ranks each household i in the priority order they will be allocated some

benefit or treatment, Ti ∈ {0, 1}. This ranking zi may include ties between households;

in the extreme it could simply represent the binary decision of whether household i

will be allocated treatment (zi ∈ {0, 1}).
We attempt to reconcile that ranking with an implicit welfare function

S =
∑
i

Si (1)

Si = w(xi) · ui(Ti)

where each household i is valued from the perspective of the policy according to

some utility ui(Ti), scaled by some differential welfare weight w(xi) based on its

characteristics xi (boldface indicates vectors, throughout).

The utility of household i from the perspective of the policy can be decomposed

into components

ui(Ti) =
∑
j

bijvij(Ti) + a · Ti (2)

where vij represents the utility of household i arising from component j, and bij

represents the implied value of that component. For simplicity, we here consider

“non-choice” components of utility vij , where i does not directly choose their level of j

(e.g., an immune system response to a vaccine). We will later generalize to “choice”

outcomes over which i has some ability to influence the outcome (such as consumption

and savings) in Section 3.4. We also allow treatment to provide some base value

irrespective of its impact on outcomes, denoted by a.1

Imagine we knew the impact of treatment on household i’s component of utility

j: ∆vij := vij(1)− vij(0). The welfare impact of treating household i could then be

1For intuition: if a is large in magnitude, the ranking between households is explained mostly by
differences in welfare weights; if a is small or zero, the ranking depends also on impacts.
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written

∆Si = w(xi) ·

(∑
j

bij∆vij + a

)
(3)

If the cost of treating each household is the same, the ranking of each household,

zi, can then be reconciled with its implied welfare impact plus a shock εi, as long as

there exists a weakly increasing function f that preserves the ranking of households,

zi = f(∆Si + εi). (4)

The shock may represent measurement error in estimates of welfare, or mistakes in

the allocation.

2.1 Intuition

To demonstrate the intuition behind our method, we illustrate with a simple example

in Figure 1. Consider the case of a single non-choice outcome and one dimension of

heterogeneity, xi, which corresponds to income. A policymaker allocates a program

by ordering households by zi = Z(xi), for some function Z that prioritizes poor

households. As shown in Figure 1, depending on how treatment effects ∆vi vary with

xi, the same allocation could result from (1) higher welfare weights on the poor, (2)

equal welfare weights, or (3) higher welfare weights on the rich. Likewise, in the

case where xi is binary, an allocation to one group can result from (i) higher welfare

weights, if that group benefits the same or less; (ii) equal welfare weights, if that group

benefits more; or (iii) lower welfare weights, if that group benefits much more.

The next section demonstrates how to empirically recover welfare and impact

weights from data when there are multiple dimensions of heterogeneity and multiple

outcomes of interest.

3 Estimation

This section describes a procedure to estimate the model (the parameters defining

objects ∆vij, a, bij, and w(xi) in equation (3)). We also discuss the conditions under

which the parameters are identified.
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An allocation rule that prioritizes the poor (low xi)
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Figure 1: Intuitive Example
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3.1 Measurement

We assume that household i’s utility from component j can be measured as a function

of the observed outcome yij, i.e., vij = gj(yij), with component utility function gj. At

its simplest this function may linear, gj(y) = y, but one may also wish to incorporate

diminishing returns, for example gj(y) = log(y).2

3.2 Procedure

Estimation proceeds in two steps:

First, we obtain a prediction of the effect of treating each household i on each

component of utility j. We postulate that the utility on outcome j arises from a

process,

vij = vj(Ti, x̃i) + eij,

with some error eij. This allows treatment effects, vj(1, x̃i)− vj(0, x̃i), to be hetero-

geneous as a function of potentially many covariates x̃i. We define the shorthand

∆v̂ij = ∆v̂j(x̃i) to refer to the predicted treatment effect for household i. Heteroge-

neous treatment effects can be estimated using a variety of methods, including OLS or

machine learning approaches that capture nuanced heterogeneity (Wager and Athey,

2018). We illustrate both of these approaches later.

Second, we estimate the preferences that would justify the ranking (z), given the

predicted effects of treatment on each household, ∆v̂ij. If household i is prioritized

over i′ (zi > zi′), equation (4) implies

∆Si + εi > ∆Si′ + εi′ .

This problem can be modeled with an ordinal logit likelihood if we make the common

assumption that the ranking error is distributed extreme value type-I: εi ∼ σ · EV (1).

To estimate this, consider an empirical analogue to equation (3),

∆Ŝi = ω(xi) ·

(∑
j

βj(xi)∆̂vj(x̃i) + α(xi)

)
(5)

2We assume that these functional forms are known. If the gj(·) utility functions are incorrectly
specified to be linear, then the estimated parameters can in some cases measure the combination of
the underlying welfare weights and curvature in utility to a first approximation. See Section 5.2.5.

10



where each theoretical object is replaced with an empirical analogue (w with ω, bij

with βj, and a with α). Although our notation here is general, in practice there are

some restrictions on these objects. In particular, they cannot all vary as a function of

xi, and must be normalized. (In our application, we assume that βj are constants,

which are defined relative to a constant α with |α| = 1. We also assume welfare

weights are positive: ω > 0. We describe other options for normalization in Online

Appendix S2.) The covariates used to estimate treatment effects (x̃i) must also differ

from those allowed to determine welfare weights and base values (xi), as we discuss in

the following section (3.3).

Then, the placement of i in the ranking z has likelihood

li =
exp

[
1
σ
· ω(xi)

(∑
j βj(xi)∆̂vj(x̃i) + α(xi)

)]
∑

i′εΛi
exp

[
1
σ
· ω(xi′)

(∑
j βj(xi′)∆̂vj(x̃i′) + α(xi′)

)] (6)

where Λi = {i′|zi′ < zi} is the set of households ranked lower than household i.

The likelihood of the full observed ranking z is therefore

L(z,x|ω,β,α, σ) =
∏
i

li.

We observe a single ordering of all alternatives, which differs from discrete choice

settings where partial orderings are observed for multiple decisionmakers. For this

type of ranked data, we follow the exploded logit likelihood described by Train (2009).

As with many discrete choice models, ours is identified up to a scaling parameter, so

we impose σ = 1. We use maximum likelihood to estimate the ω, β, and α that best

match the observed data {z,x, {∆v̂ij}ij}.
For outcomes yj that are not choices, the estimated ω, β, and α correspond

with those in the theoretical model: ω will capture the welfare weights w; βj the

weights on outcome bij; and α the base value a. For outcomes yj that are choices,

the interpretation is slightly different: βj will capture the difference between how

the policy and households value the outcome j, and α will additionally capture any

relaxation of the constraint on choices. When the magnitude of α is normalized to 1,

the value of outcome j captured by βj will be defined relative to this base value. We

discuss this interpretation in Section 3.4, parameterization in Section 3.5, and other
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more nuanced cases in Section 5.

Confidence intervals are computed using a Bayesian bootstrap (Rubin, 1981) over

the entire procedure, which accounts for uncertainty in both treatment effects and

preference parameters. We generate bootstrap samples by reweighting (rather than

resampling) households, compute treatment effects, and then welfare and impact

weights.3

In many settings, we may not observe a full ranking or score, but rather a binary

allocation of beneficiaries and non-beneficiaries (Ti ∈ {0, 1}). This corresponds to a

ranking with two levels, so the same procedure can be applied, though it will tend

to have less statistical power. We provide an empirical illustration of this setting in

Section 5.2.1.

3.3 Identification

Exclusion restriction Preferences are identified based on how the policy’s ranking

(zi) varies with the set of characteristics that enter the welfare weights (xi) and

the set that determine treatment effect heterogeneity (x̃i). Identification of the full

model’s parameters (ω, β, and α) requires an ‘exclusion restriction’, whereby xi

does not include the full set of characteristics in x̃i. To see this, note that without

such a restriction, one could set α ≡ 1 and βj ≡ 0 for all j without empirical loss of

generality. Conceptually, an exclusion restriction makes it possible to compare how

the policy ranks households who have similar welfare and outcome weights (based on

xi) but would be differentially affected by treatment (based on x̃i). For a more formal

discussion of identification, see Online Appendix S2.

An exclusion restriction can be justified in settings where there exist covariates that

are potentially predictive of treatment effect heterogeneity (and thus may reasonably

be included in x̃i), but which are unlikely to have been prioritized by a policy. Such

exclusions are natural in many settings, as welfare and outcome weights represent

preferences, which are commonly coarser than heterogeneity in treatment effects, which

may depend on many more idiosyncratic factors. For instance, in the PROGRESA

3Random weights are drawn from the distribution Dirichlet(4, ..., 4), following Shao and Tu
(1995). The Bayesian bootstrap makes it possible to use treatment effect estimators that hold out
part of the sample (like causal forests, which we demonstrate later). For those estimators, standard
bootstraps can misestimate if the same observation appears in both training and hold-out samples.
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example, the policy is unlikely to have placed different weights on the utility of a child

based on the household gender composition – but household composition was one of

many correlates of impacts from the program. If there is ambiguity about what to

include, it can improve confidence to report sensitivity to different sets.

Conditional preferences without exclusion restriction Alternately, one can

impose some of the parameters defining preferences (either ω; or β and α), and use the

method to estimate what remaining preferences would be consistent with the allocation.

For example, one may wish to know what weights on outcomes (β and α) would be

consistent with the allocation if welfare weights were egalitarian (ω(xi) ≡ 1). Or, it

may be informative to derive the welfare weights (ω) consistent with the allocation

given reasonable weights on outcomes, such as if the policy only valued a single

outcome (such as health), or if it valued outcomes according to external estimates

(e.g., by calibrating β(xi) and α(xi) to estimates from the medical literature). If

outcomes are choices, it would be natural to consider a restriction that the policy is not

paternalistic (and thus values easing household constraints uniformly (so α(xi) ≡ α)

but βj = 0 for all outcomes j that are choices). In Section 4.3.2, we illustrate how

these different restrictions can be applied.

Unobservables Our approach reveals the preferences that are consistent with a

potential policy z, given estimates of the policy’s impact ∆v̂. Our estimates will recover

an observed component of welfare, ∆Si, that is uncorrelated with any unobserved

component, εi. There are several reasons why these implied preferences of the policy

might differ from actual preferences.

First, the implied preferences of the policy could differ from the actual policy

preferences if the actual ranking is based on correlated unobservables. For example,

if a policy is racially biased but an analyst does not allow race to enter modelled

preferences, the policy may be found to be consistent with a preference for an income

level that is correlated with race. In such settings, the method still reveals preferences

that are consistent with the policy’s values, under the given specification of preferences,

just as ordinary least squares recovers the best linear predictor given included variables,

even when it omits variables. Similarly, if x includes both a relevant variable as well

as an irrelevant but colinear variable, the method will have imprecise estimates of
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the contribution of both, again similar to a standard regression. The specification

of preferences (i.e., which variables they are defined over and their functional form)

is thus a substantive decision. For this reason, practical applications should include

characteristics that may be relevant for differential preference, including those that

one believes should be used, as well as characteristics for which there may be concerns

of bias.

Second, the implied preferences of the policy that are revealed by our method may

differ from the preferences of the policymaker if the policymaker has different beliefs

about these impacts at the time of the decision. If that were the case, upon observing

the results of our method, the policymaker could change the policy to better align

with their preferences. The method thus provides a tool for course correction. The

method can also be applied in cases where there is no single policymaker—for example,

where allocations are the result of deliberations between constituents.

Sufficient variation Identification also requires sufficient variation. Identification

of β requires that treatment has different impacts on different components of utility.

Impact weight βj is identified primarily by the relative ranking of households that

are impacted more or less on utility component j. Then, the welfare weights ω are

primarily identified based on how the ranking places households that have different

characteristics but achieve similar weighted impact (ui(1)−ui(0)). If treatment effects

were homogeneous, it would not be possible to separately identify β and ω.4 If the

treatment effects were heterogeneous but colinear between different components of

utility, it would be possible to identify ω but not β, because the data would not reveal

how different components of utility influence the ranking.

3.4 Outcomes that are Choices

In settings where treatment affects choices made by households, the estimates produced

by the above procedure have a slightly different interpretation. As before, utility

may be derived from outcomes yij that are not i’s choice (e.g., an immune system

response to a vaccine), for which yij(Ti) is a mechanical function. But utility may also

4Their combination may be identified, in which case our method would collapse down to a standard
exploded logit that does not account for treatment effects.
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depend on components that i chooses, and where treatment changes the choice set

(for instance, if a cash transfer relaxes the budget constraint).

For each choice outcome j ∈ Jchoice, given Ti, household i chooses yij to maximize

its perceived utility

ũi =
∑
j

b̃ijgj(yij) + ã · Ti (7)

subject to budget constraint

c(yij∈Jchoice) = µi + φiTi (8)

with associated Lagrange multiplier ηi. The household perceives its value of outcome j

as b̃ij , and its base value of being treated as ã. It faces a weakly convex cost function c

that, in the absence of treatment, is constrained to be below µi.
5 Treating i alleviates

this constraint by amount φi. Heterogeneity in treatment effects could then arise from

households making different choices due to preferences (b̃ij), budgets (µi), or efficacy

of treatment (φi).

When choices are made in this manner, the policy will perceive the value of treating

household i as

∆Si = w(xi)︸ ︷︷ ︸
ω(xi)

∑
j

(bij − 1{j∈Jchoice} · b̃ij
)

︸ ︷︷ ︸
βj(xi)

∆vij

+ φiηi + a︸ ︷︷ ︸
α(xi)

 , (9)

which generalizes equation (3) when some outcomes j are choices. The underbraces

highlight the empirical analogues that would result from estimating the main specifi-

cation (equation (5)). This derivation, shown in Online Appendix S1.1, arises from

the envelope theorem.

For outcomes that are not choices, the interpretation of parameters is analogous

to before: βj(xi) will capture the policy’s marginal valuation of that outcome, bij.

However, for outcomes j that are choices, the interpretation is slightly different. Any

choices that the policy values in the same way as the household will not be included

(βj(xi) = 0), because the policy will defer to household optimization due to the

envelope theorem. Instead, the policy will value the relaxation of the constraint: α(xi)

5In the case where the functions gj are linear, strict convexity of c is required to ensure an interior
optimum.
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will pick up this general relaxation (φiηi) plus any explicit benefit a. However, if the

policy values the choices of i differently from the household (an internality), then

βj(xi) will also capture the difference in marginal valuation, bij − b̃ij.
This suggests that the resulting estimates will place weight on nonchoice outcomes

that the policy cares about, and choice outcomes that have internalities. One may

include other outcomes and statistically test for paternalism (βj(xi) 6= 0). A policy

may also place weight on choices that have externalities, though this leads to a more

subtle interpretation, which we discuss in Section 5.

3.5 Parameterization

Our framework will work with general functional forms for ω(xi) as well as for βj(xi)

and α(xi). In the empirical application that follows in Section 4, we model welfare

weights as multiplicative,

ω(xi) = Πkγ
xik
k .

We impose the constraint γ > 0, so that an outcome cannot be a good for some

households and a bad for others.

We use simpler functional forms for preferences because our empirical example uses

a sample that is not large enough to differentiate all of the dimensions of heterogeneity

that our model allows. We model the relative weight on outcome j and the constant

term as the same for all households, βj(xi) ≡ βj, α(xi) ≡ α, and |α| = 1.6 The first

implies that the wedge in marginal valuations is the same for all households (that is,

bij − b̃ij ≡ ∆bj). The second implies that any relaxation in the constraint for choice

outcomes is the same for each household (φiηi ≡ φη for some fixed φη).7 The third

implies that estimated weights on outcome j will be defined relative to any value

φiηi + ai.

6The model can identify the sign of α, but when we bootstrap the procedure, the sign may switch
between draws (i.e., treatment may be a good and the policy favors certain households, or a bad, and
the policy disfavors those households). This leads to bimodal confidence intervals that are difficult to
interpret. In our baseline model, α = 1 achieves superior fit to α = −1, so we restrict to the positive
sign (α = 1) for all results.

7More generally, it implies that the sum of any relaxation in the constraint for choice outcomes
plus the base value is the same for each household, φiηi + ai ≡ φη + a, if one allowed ai to vary.
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4 Application

To illustrate how our method can be used in applied settings, we consider the case of

PROGRESA, a large conditional cash transfer program in Mexico.

4.1 Background on PROGRESA

First implemented by the Mexican federal government in 1997, PROGRESA pro-

vided cash transfers to poor households. Transfers averaged 197 pesos per month

(approximately $20 USD at the time). Although transfers were conditioned on regular

doctor’s visits and/or regular school attendance (John Hoddinott, 2004), roughly 99%

of enrolled households met these conditions (Simone Boyce, 2003).8

Policy documents emphasize the objectives of alleviating poverty and improv-

ing the health and education status of poor children in poor households. Coady

(2003) also notes the potential for PROGRESA to “bring about important behavioral

change,” suggesting a possible mismatch between the natural preferences of household

decisionmakers and policymakers.

PROGRESA was a targeted program that offered benefits only to eligible house-

holds. Within poor communities, the program ranked households based on a ‘household

poverty score’ proxy means test that incorporated a variety of different characteristics

(such as household structure, indigenous languages, occupation, income, housing

materials, etc.).9 The score was computed in three steps. First, each household was

classified as poor or not poor based on per capita income. Second, that poverty

classification was approximated using discriminant analysis based on household char-

acteristics (Skoufias et al., 1999). Third, the list of eligible households was presented

in meetings in each community for review; a small number of households changed

classification as a result. Our focus is on understanding which underlying values are

consistent with the allocation resulting from this method of determining eligibility.

8For simplicity, our analysis does not account for the conditionality of the transfer. For a
more detailed discussion of PROGRESA and its background, see Emmanuel Skoufias (2008), and
Simone Boyce (2003).

9The program defined poor communities as those with a high ‘village marginality index’, computed
based on the proportion of households living in poverty, population density, and health and education
infrastructure. We focus on the preferences implied by household poverty scores, which were the
basis for determining which households within a community were eligible for the program.
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During its initial implementation, PROGRESA administrators used a staggered

roll-out to randomize when villages could enroll in the program: of the 506 villages

included in the evaluation, 320 were randomly assigned to treatment, and initiated

into the program in summer 1998. 186 communities were assigned to control and were

not initiated into the program until 2000. Behrman and Todd (1999) show that, prior

to roll-out, treatment and control communities were statistically indistinguishable

across a wide array of observable covariates.

Data

Our analysis relies on two distinct sources of data. The main data comes from

household surveys conducted in October 1998 (midline) and November 1999 (endline).

These capture household demographics, socioeconomic characteristics, health care

utilization, and educational attendance for 14,801 households over the experiment

period. Our main analysis focuses on the endline sample of 7,767 households over

which our outcomes are defined (Nrank), who have at least one child aged 5 or below

and at least one child aged 6-16. Within this sample, the transfer given to each

household was nearly identical, so we assume the cost of treating each household is

identical.10 We present midline summary statistics for these households in Online

Appendix Table S1.11

The second data source is a survey that we conducted in 2023 to understand the

preferences of Mexican residents over how households should be prioritized for social

assistance. We surveyed a sample of 429 Mexican residents to elicit preferences for

which types of households should receive transfers, and what types of program impacts

were most desirable, in a manner similar to Saez and Stantcheva (2016). The survey

asked respondents which household attributes should be considered in the design of

10Given the transfer schedule in Skoufias et al. (2001c), 87.2% of households received the upper-
bound payment of 750 pesos and 99.2% of households received between 725-750 pesos.

11This survey was conducted 1 year after treatment. While there was a baseline survey in 1997, it
was more limited and did not include all of the relevant covariates; see Online Appendix Section S3. We
note a caveat to the external validity of our approach when using these data to study the values implied
by PROGRESA. Since PROGRESA was only targeted at poor villages (i.e., those with a low ‘village
marginality index’), and because only a subset of households in poor communities were potentially
eligible for the program (i.e., households with a high poverty score and with eligible children), the
treatment effects we estimate are local to this subpopulation of Mexico. Thus, subsequent inferences
about welfare weights should also be interpreted as weights within this subpopulation and may not
necessarily generalize to the full Mexican population.
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such a program, and relied on multiple price lists to elicit indifference points. We also

ask about the degree to which society should entrust household decisionmakers to

make the decisions best for children. For a complete description of this survey, see

Online Appendix S4.

We focus on the three welfare outcomes (i.e., yj in our framework) that were

emphasized in policy documents and for which the most robust impacts of the

program have been documented (Parker and Todd, 2017): (i) consumption per-capita;

(ii) child health, measured as the average number of sick days per child aged 0-5; and

(iii) school attendance, calculated as the average number of school days missed per

child aged 6-16.12 In our main specification, we allow consumption to enter with

logs (g0(yconsumption) = log(yconsumption)), and allow the other two outcomes to enter

the welfare function linearly (gj(yj) = yj for j > 0).13 Note that the program could

also have impacted other outcomes not measured; our method will assume that such

impacts are either zero or not valued. In Section 4.5.1, we discuss implications and

extensions of this simplifying assumption.

We consider welfare weights (i.e., ω(xi)) over log of income; number of people;

and the household head’s age, indigenous status, and whether they completed middle

school.

4.2 Characterizing the Decision Rule

As a first step, we characterize the decision rule by indicating which types of households

are observed to be ranked higher than others. Table 1 column 1 reports these results,

where the contribution of household characteristics to the final ranking z is estimated

with a logit ranking model (i.e., our model’s likelihood equation (6) with constraints

β ≡ 0 and α = 1, estimating the constrained weights γ̃). We report coefficients

transformed by logarithm (log(γ̃)), which can be interpreted as the implied percentage

12The review article Parker and Todd (2017) notes that while estimated impacts on consumption,
health, and school attendance are robust to adjustments for multiple hypothesis testing, impacts
on other outcomes are sensitive to such testing. Specific studies that have estimated significant
treatment effects on all three outcomes using the same survey data include John Hoddinott (2004);
Emmanuel Skoufias (2008); Simone Boyce (2003); Djebbari and Smith (2008).

13A logarithmic functional form for consumption represents a natural benchmark, as Gandelman
and Hernandez-Murillo (2015) fails to reject a level of risk aversion consistent with logarithmic utility
in Mexico, based on self-reported wellbeing. We also consider robustness to a linear functional form
for consumption in Section 4.5.1.

19



Table 1: What Values are Consistent with the PROGRESA Decision Rule?

Household Poverty Score 1999

Decision Rule Implied Preferences

(Prioritization) Welfare Weights

Welfare Weights log(γ)

Indigenous 0.606 (0.581, 0.634) -0.174 (-0.227, -0.038)

log(Income) -0.237 (-0.252, -0.223) -0.19 (-0.234, -0.138)

Household Size 0.116 (0.112, 0.119) 0.104 (0.085, 0.118)

Household Head Age -0.02 (-0.021, -0.018) -0.016 (-0.02, -0.01)

Education (Middle school or above) -1.007 (-1.263, -0.85) -0.727 (-0.952, -0.505)

Impact Weights

Log consumption (per capita) β1 6.07 (4.04, 7.28)

Missed Schooling (per day) β3 -0.48 (-1.33, 0.02)

Sickness (per child sick day) β2 -0.05 (-0.51, 0.56)

Value Regardless of Impact α 1

Nrank 7767 7767

NTE . 6784

Hypothesis Tests p-value

Egalitarian γ ≡ 1 3.01e-16

Not Paternalistic β ≡ 0 5.12e-10

Egalitarian and Not Paternalistic γ ≡ 1, β ≡ 0 3.96e-22

Notes: ‘Decision Rule’ column is computed using our method, without treatment effects included in the estimation. ‘Implied
Preferences’ column is calculated using our method, using OLS to estimate heterogeneous treatment effects (see also Figure 2).
95% confidence intervals, in parentheses, are computed using a two-step Bayesian bootstrap procedure that accounts for
uncertainty in both treatment effects and preference parameters. Dirichlet bootstrap weights are drawn and then treatment
effects are estimated using these bootstrapped weights, and welfare and impact weights are estimated using the same weights.
Nrank is the number of observations used in estimating the final ranking, NTE describes the number of observations used in
estimating the heterogeneous treatment effects, which are then projected to the full sample based on covariates.

changes implied, with 95% confidence intervals in parentheses. For convenience, in the

remainder of the paper, we will refer to characteristics as having positive weight if this

quantity is above zero (indicating a welfare weight above one), or negative otherwise

(indicating a welfare weight below one). These results suggest that households that are

indigenous are ranked 60.6 log points higher. It also suggests that each 10% increase

in income corresponds with a 2.37% decrease in rank. Each additional household

member is associated with a 11.6% increase in ranking. However, the conventional

regression in column 1 does not describe why these households are ranked highly; it

could be that they benefit more (higher treatment effects) or that they are favored

(higher welfare weights).
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4.3 Results: Estimating What Policies Value

Our main empirical results show how our method can recover the implied values of

the PROGRESA allocation.

4.3.1 Heterogeneity in Treatment Effects

As has been documented in prior work, the PROGRESA program significantly im-

pacted several measures of household and child welfare. Among eligible households,

we estimate that PROGRESA, on average, increased the log of household monthly

consumption by 0.149 (SE=0.015), reduced the number of sick days per child by 0.165

(SE=0.051), and had little effect on the number of school days missed per child (with

an average effect of -0.0053, SE=0.028).

However, these treatment effects were heterogeneous. We recover this heterogeneity

first by estimating the OLS specification

vij = θ0j + θxjx̃i + (θTj + θTxjx̃i)Ti + eij. (10)

We then form predicted treatment effects given

∆v̂j(x̃i) = θ̂Tj + θ̂Txjx̃i

We select variables x̃i to match the specification of heterogeneity in Djebbari and

Smith (2008) but omit poverty scores and the village marginality index (and their

respective interactions), to avoid potential correlated errors with their use in the second

stage. Estimation is performed on the set of potentially eligible households (NTE =

6784) for whom randomization affects whether they were given the program. Figure 2

shows that there is considerable heterogeneity in how different households benefit

from PROGRESA. Each of the histograms in the figure indicates the distribution of

treatment effects for one of the outcomes: for instance, most of the impacts on absences

from school are in the range from -0.4 to 0.4 days per child, and most consumption

treatment effects are in the range from -0.1 to +0.4 log of consumption.

The Online Appendix provides further insight into the nature and predictors of

treatment effect heterogeneity. In Online Appendix Table S2, we show the coefficient

estimates for all outcomes. We observe, for instance, that indigenous status significantly
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moderates treatment effects for consumption impacts. Online Appendix Figure S1

shows residualized treatment effects, estimated after removing variation explained

by the other covariates, to better illustrate how the predictors relate to treatment

effects. Panel (a) suggests that, for instance, consumption treatment effects are

negatively correlated with income and larger for indigenous households; likewise, panel

(b) indicates that schooling treatment effects are smaller in magnitude for households

with more members. However, the effects of treatment also vary by fine categories of

household composition, such as the number of men aged at least 55 years, and the

number of women aged 20-34 years.

4.3.2 Implied Policy Preferences

Next, given that we predict the policy would have impacts ∆v̂ij on household i, we use

our method to back out the implied preferences consistent with ranking that household

at position zi. Although household demographics are correlated with heterogeneous

treatment effects, they are likely only coarsely incorporated into the preferences of

policymakers for our sample of households that have children. Thus, we assume that

these fine measures of household age and gender composition are excluded from welfare

weights. This allows us to separately identify the implied preferences of the policy.

Table 1 column 2 reports the preferences that are consistent with the ranking z.

The first block of rows shows the implied welfare weights (γ), and the second block

shows implied impact weights (β and α). Because the policy ranked all households,

we estimate these preferences on this full ranking (Nrank).
14

Accounting for treatment effect heterogeneity leads us to a different understanding

of PROGRESA’s targeting priorities. For instance, we find that after accounting for

the fact that indigenous households benefit more from treatment, the decision rule

does not actually place a higher welfare weight on indigenous households; in fact, the

estimate suggests that the implied welfare weights may be lower (by 17.4%).

The PROGRESA treatment (cash grant) relaxes household budget constraints,

which among other things can allow household decisionmakers to improve outcomes

14This relies on using the estimated first stage model to extrapolate predicted treatment effects for
the 14% of households that were ineligible. This is reasonable if heterogeneity in treatment effects
is similar for eligible and ineligible households. In Table S8 (column 2), we show that results are
qualitatively similar if we restrict this second step to eligible households.
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Figure 2: Distribution of Estimated Treatment Effects
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Notes: Heterogeneous treatment effects of PROGRESA, estimated using OLS. Histograms show
marginal treatment effects on log consumption (left), sick days among young children (top), and
missed school days (right). Center figure shows joint distribution, where each cell corresponds to
a combination of consumption and health treatment effects, and is colored according to average
treatment effect on attendance. Households without at least one young and one school-age child are
omitted from the figure.
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for children. For this reason, the outcomes depend on the choices made by households,

and the estimates of β can be interpreted as the difference between how the policy

and household decisionmaker value the outcome, as discussed in Section 3.4. The

positive estimate for log consumption thus suggests that the policy places a higher

value on this outcome than households. Our estimates of weights on the other impacts

are imprecise. For schooling and sickness, the confidence interval includes zero, so

we cannot rule out the possibility that the policy’s preference coincides with that of

household decisionmakers (though for sickness, the confidence interval barely includes

zero). Overall, our estimates suggest that, from the perspective of the policymaker

(equation (2)), on average 55% of the impact of PROGRESA on household utility comes

from simply providing the transfer, irrespective of impacts on measured outcomes (the

constant term α). Approximately 45% is derived from the impact on consumption

(β1), and <1% derives from impacts on health and schooling. The ratio α/β1 suggests

that the implied value of providing the program independent of impacts corresponds

to 0.16 log points of consumption, or a mean consumption increase of 23.1 pesos per

person per month, which is slightly smaller than the average transfer of 33.9 pesos per

person per month (John Hoddinott, 2004).

We can also test whether our estimated parameters are consistent with postulated

welfare functions. We use Wald tests (with the bootstrapped covariance matrices) to

test the null hypothesis that preferences are egalitarian (γ ≡ 1), non-paternalistic

(β ≡ 0), or both egalitarian and non-paternalistic (γ ≡ 1 and β ≡ 0). These results

are presented in the bottom panel of Table 1. We reject the hypothesis that our

estimated coefficients do not place differential weight on different households and

outcomes, across all specifications. We also strongly reject non-paternalism.

4.3.3 Assessing Preferences

Our framework also makes it possible to compare the preferences consistent with

alternative policies. For instance, the Mexican government expanded PROGRESA

in 2003, changing the poverty score to increase the priority of older and smaller

households (Skoufias et al., 2001b). As shown in column 2 of Table 2, by comparing

the relative magnitudes of the coefficients in each rule, our method reveals that this

new poverty score implicitly switched to having a positive welfare weight for indigenous
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Table 2: Assessing Decision Rules

(1) (2) (3)

Implied Preferences (Estimated) Stated Preferences

1999 Pov. Score 2003 Pov. Score (Resident survey)

Welfare Weights log(γ)

Indigenous -0.174 (-0.227, -0.038) 0.062 (0.011, 0.196) 0.065 (0.057, 0.072)

log(Income) -0.19 (-0.234, -0.138) -0.072 (-0.11, -0.039) -0.071 (-0.257, 0.116)

Household Size 0.104 (0.085, 0.118) 0.086 (0.075, 0.096) 0.015 (-0.018, 0.049)

Household Head Age -0.016 (-0.02, -0.01) -0.001 (-0.004, 0.002) 0.004 (0.002, 0.005)

Educated -0.727 (-0.952, -0.505) -0.416 (-0.582, -0.3) -0.065 (-0.099, -0.03)

Impact Weights

Log Consumption (per capita) β1 6.07 (4.04, 7.28) 2.23 (1.49, 2.72) 4.37 (2.99, 5.75)†
Missed Schooling (per day) β3 -0.48 (-1.33, 0.02) -0.32 (-0.71, -0.07) -1.11 (-1.6, -0.62)†
Sickness (per child sick day) β2 -0.05 (-0.51, 0.56) -0.01 (-0.21, 0.3) -0.69 (-1.03, -0.35)†
Value Regardless of Impact α 1 1 .

Nrank 7767 7767 .

NTE 6784 6784 .

Nrespondents . . 421*

Notes : Columns 1-2 are estimated using our method, using OLS to estimate heterogeneous treatment effects. Column
3 indicates stated preferences estimated on a survey of Mexican residents; to reduce the impact of outliers we report
the median response (for details of this survey, see Appendix S4). † Survey weights scaled to match the scale of
estimated impact weights since we did not estimate the scale of idiosyncratic noise in the survey. 95% confidence
intervals are reported in parentheses. ‘Educated’ defined as a household head with a middle school education or
above. In the first two columns, confidence intervals are computed using a two-step Bayesian bootstrap procedure
that accounts for uncertainty in both treatment effects and preference parameters: dirichlet bootstrap weights are
drawn and then treatment effects are estimated using these bootstrapped weights, and welfare and impact weights are
estimated using the same weights. Nrank describes the number of observations used in estimating the final ranking,
NTE describes the number of observations used in estimating the heterogeneous treatment effects, which are then
projected to the full sample based on covariates. *: The number of survey respondents differs for different parameters
(ranging between 411 and 421), due to incomplete responses. Confidence intervals in column 3 are computed using
standard errors from a standard bootstrap over all individuals, with missing values dropped.
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households, and placed less welfare weight on lower-income and younger households.

Table 2 also illustrates how the implemented policy (column 1) compares to the

median stated preferences of residents, as reported in the survey we conducted in

2023 (column 3). Welfare weights γ are estimated from residents’ choices of how to

prioritize different households in a multiple price list. The welfare weights implied by

the implemented policy are similar to resident preferences, but place higher welfare

weights on indigenous households. Impact weights β are formed by asking how a

household would make decisions between an outcome and a cash transfer, and then ask

how society should value that outcome relative to the decisionmaker in the household.15

On average, survey respondents value impacts on the health of children more than

they expect household decisionmakers to, and more than the implemented policy

does. In separate survey questions, we asked residents to rate statements describing

whether the government should directly support children, whether these outcomes

have externalities, and whether the government should trust parents to do what is best

for children. The responses, summarized in Online Appendix Table S9, are consistent

with support for paternalism.

4.4 Counterfactuals

We next consider the reverse problem: given preferences, what would the resulting

policy look like? In the PROGRESA example, Table 3 compares the policy’s true

allocation (column 1) to counterfactual allocations that would have resulted from

alternative preferences (columns 2-6). Panel A indicates which preferences are used.

We allow the welfare weights to be those estimated from the 1999 policy (columns

1, 4-6), those elicited from the resident survey (column 2), or fixed to weight all

households equally (column 3). We allow the impact weights to be those estimated

from the 1999 policy (columns 1 and 3), those elicited from the resident survey (column

2), or to only value one outcome (columns 4-6). Panel B indicates the decision rule

implied by those preferences, where we take the implied ranking and estimate a logit

model, as in column 1 of Table 1. Panel C shows the average outcomes that would be

15This combination allows us to estimate the implied weight a policy should place on each outcome,
b̃j − bj . Because this survey does not estimate the scale of the idiosyncratic error σ, we rescale these
survey estimates of β to have the same average magnitude as those estimated from the 1999 poverty
score. See Online Appendix S4.
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expected under the hypothetical policy, assuming the hypothetical policy treated the

same number of households as the implemented policy.

Survey-based Estimates of Resident Preferences Column 2 of Table 3 shows

the allocation that would result from imposing the preferences of residents as revealed

by the survey. Relative to the actual policy in column 1, the hypothetical policy

in column 2 places greater priority on indigenous households, and less priority on

households with less education. Other household attributes are similarly prioritized

under the two policies. In Panel C, we see that the policy consistent with resident

preferences would slightly increase average consumption and slightly reduce average

child missed school days and sick days relative to the implemented policy.

Alternate Welfare Weights When welfare weights are set equal across households

(column 3), the resulting ranking increases the priority of indigenous households,

slightly lowers the priority of large and poor households, and no longer prioritizes

households with lower education.

Prioritizing Specific Welfare Outcomes Most real-world policies balance mul-

tiple outcomes. For comparison, columns 4-6 of Table 3 present counterfactual

allocations that would result in the extreme case where a policy was designed to

improve only a single outcome. For instance, a policy that maximized impacts on

consumption with no explicit consideration of health or education (column 4) would

end up placing greater priority on households where the head is indigenous, and would

place higher priority on households with lower income. Alternatively, a policy designed

to maximize educational impacts would prioritize smaller households and those with

higher income (column 5). Finally, if only health impacts were valued, the policy

would largely preserve the prioritization of indigenous households, and put smaller

emphasis on lower-education households (column 6).
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Table 3: Designing Decision Rules

(1) (2) (3) (4) (5) (6)

HH Poverty Resident Equal Welfare Policy only values impact on:

Score Preferences Weights Consumption Education Health

Panel A: Preferences

Welfare Weights γ Estimated From survey Unity Estimated Estimated Estimated

Impact Weights β Estimated From survey Estimated Only consumption Only education Only health

Panel B: Implied decision rule (priority over covariates, in logs)

Indigenous 0.606 2.289 1.987 2.372 -0.114 -0.023

log(Income) -0.237 -0.344 -0.183 -0.375 0.303 0.178

Household Size 0.116 -0.009 -0.022 0.042 -0.137 -0.041

Household Head Age -0.02 -0.009 -0.012 -0.02 -0.013 -0.036

Education -1.007 -0.206 0.054 -0.77 -0.532 -0.131

Panel C: Counterfactual outcomes (monthly)

Log Consumption per capita (pesos) 4.803 4.817 4.819 4.819 4.798 4.794

Missed school (days/child) 0.169 0.162 0.169 0.172 0.146 0.172

Sickness (sick days/child) 0.645 0.634 0.649 0.651 0.641 0.600

Model Log Likelihood -60930 -61647 -61953 -61327 -61467 -61615

Nrank 7767 7767 7767 7767 7767 7767

Notes: Table shows the distributional and outcome effects of designing decision rules using our framework. Panel A indicates which weights are
used to prioritize households. Column 1 uses the ranking assigned by PROGRESA. Column 2 uses preferences elicited in a survey we conducted of
Mexican residents. For the survey column, we set α = 1 and scale survey impact weights to have the same average magnitude as estimated impact
weights. Survey weight model likelihood computed using same constant term. Column 3 projects the ranking as though the policy assigned the
same welfare weight to all households, so preference results from differences in outcomes. Columns 4-6 indicate what would have happened if the
policy used the estimated weights over households but only valued about impacts on education/health/consumption, with α = 0. Panel B shows
the distributional effects of each column’s preferences, by estimating the implied priority ranking across households. Panel C shows each policy’s
expected average outcomes, calculated using estimates of heterogeneous treatment effects.
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Figure 3: Expected Program Impacts under Alternative Preferences

Notes: Figure shows the frontier of possible average welfare impacts that would have resulted

from different allocations of PROGRESA. Each axis indicates the expected average impacts for the

corresponding welfare outcome. Labeled points indicate specific allocations described in Table 3.

Understanding the policies that would result from extreme preferences can help in

understanding the full set of potential policies, and what those policies imply. Figure 3

characterizes the frontier of possible average outcomes that would result from different

allocations of PROGRESA. This frontier is shown as a convex hull with contour

lines; the labeled points correspond to the policies given in the columns of Table 3.

Policies that only value a single outcome lie at the corners of the outcome space. The

implemented program (‘HH Poverty Score’) is close to the allocation consistent with

the survey of Mexican residents preferences. All labeled points apply welfare weights

so one would not expect either to reach the frontier for unweighted outcomes, but

they are close.16 More broadly, this method makes it possible to navigate program

design in outcome space, rather than implementation space.

16The distances from labeled points to the frontier, defined as frontier point coordinates minus
allocation point coordinates and in units of (Log Consumption, Sick Days, Missed School Days), are
as follows. Survey: (-0.0003, -0.005, 0.001); HH Poverty Score: (-0.010, -0.0009, 0.005); Consumption:
(0.0, -0.0001, 0.0001); Health: (0.0001, -0.0002, -0.0003); Education: (-0.0003, 0.0002, -0.003). The
distance between the implemented program and the survey is (-0.014, 0.010, 0.007).
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4.5 Additional Considerations

4.5.1 Specification of Outcomes

This section briefly discusses which outcomes should be included when modeling

welfare from the perspective of the policy. One simple approach is to include outcomes

in the framework in order to empirically test whether they in fact influence the decision

rule; that is, whether the estimated coefficients differ from zero. As noted previously,

this interpretation depends in part on whether the outcomes are choices (and treatment

simply alters the choice set); in that case, non-zero weight implies that the policy

values the outcome differently from the household.

When multiple reasonable sets of outcomes could be included, it is reasonable to

test multiple sets to assess robustness. For instance, Online Appendix Table S4 shows

how our main estimates (from Table 2) change if we split the consumption outcome into

food and nonfood consumption (column 2); it also includes specifications that include

just 1 or 2 outcomes at a time (columns 3-8). We saw previously that consumption

explains a substantial portion of the impact on households in our baseline specification.

Alternate specifications find similar results so long as they include consumption;

specifications that omit consumption find estimates close to that of the raw ranking

itself (Table 1 column 1).17

Additionally, there may be multiple reasonable functional forms through which

outcomes could be valued. Our primary specification uses log consumption, but

column 9 of Table S4 presents results using a linear functional form for consumption.

Results are again similar: indigenous households have a positive welfare weight, but

this weight is still much smaller relative to the weights on other attributes than the

ranking alone would suggest.

4.5.2 Specification of Covariates

The set of covariates included when estimating heterogeneous treatment effects (x̃i) is

flexible: one may include any baseline variables predictive of heterogeneity so long as

one takes care to avoid overfitting. The set of covariates xi allowed into the welfare

17An additional outcome that a policy might value is long term investments, as documented in
Gertler et al. (2012), which could have trade-offs with short-term consumption. This analysis could
be extended to include investments as an outcome.
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weights is more nuanced and should be motivated by theory. As noted, the practical

requirement (exclusion restriction) is that the covariates xi not include all those in x̃i.

When there are multiple reasonable specifications for xi, it again is reasonable

to assess robustness to those different specifications. This is demonstrated for PRO-

GRESA in Online Appendix Tables S5 and S6, which compare specifications with

different covariates. Results are almost all qualitatively unchanged.

Absent an exclusion restriction, the framework can be applied by imposing some

parameters and estimating the rest, as suggested in Section 3.3. We demonstrate this

approach in Online Appendix Table S7, which shows what happens when preferences

are assumed to be egalitarian or to only prioritize one particular impact. In the latter

case, one may wish to impose impact weights from a scientific literature; for simplicity

we assume that for the selected j, |βj| = α = 1. We find that results are broadly

similar across these specifications, with positive weight on household size and negative

weights on household income and head education. This assumes that consumption

impacts are valued much less than in our full estimated specifications, and accordingly

finds a positive weight on indigenous households, though in most cases it is attenuated

compared to the ranking alone.

A caveat: impacts may correlate with unobservables The exclusion restric-

tion is more nuanced for policies that may value households based on components

that are difficult to measure. Imagine a policymaker assigns household i a true welfare

weight wi, which may contain components that are not well captured by observable

covariates xi, such as ‘neediness’. If those components are correlated with impact on

some outcome, ∆y(x̃i) (say, how much of a grant that a household spends on food

consumption), then our method may attribute a weight on this impact that in fact

arises from the correlation with the unobservable.18

It is the exclusion restriction that opens the door for this problem. xi should

include all variables that may enter welfare weights, including those that may signal

unobservables, if one expects these are valued. The set of variables allowed to enter

18For example, imagine that a policy values households based on neediness (wi), and values simply
providing treatment but not its impacts (a > 0, b = 0). It proxies neediness with food consumption
(y). If the correlates of food consumption are omitted from the specification of welfare weights
(xi) then we might estimate ω(xi) = 1, α = 0, and β = wi(∆y) and mistakenly conclude that the
policymaker values all people equally, and values impacts on food consumption.
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into treatment effects, but which are excluded from xi, should not include variables

that may signal unobservable welfare weights. If a user of this method is unwilling

to commit to excluding characteristics from xi, that would suggest the exclusion

restriction may not hold, and ω, β, and α are not separately identified in their setting.

One may still impose part of preferences and estimate the remainder as demonstrated

above.

4.5.3 Treatment Effect Specification and Measurement Error

The first stage of our approach can be estimated with a variety of methods and

specifications for heterogeneous treatment effects. Using a flexible method, such as

a linear estimator with many covariates or causal forests, can reduce the chance of

misspecification. However, more flexible methods can result in noisier first stage

predictions, which could attenuate or bias second stage estimates. In Online Appendix

Section S5, we discuss this in more detail, and present all our results replacing

the OLS first stage with causal forests, a nonlinear estimator (Wager and Athey,

2018). Results are all similar. We also assess the potential magnitude of attenuation

and misspecification with Monte Carlos and a bias correction technique from the

statistics literature (simulation extrapolation, or SIMEX, Cook and Stefanski, 1994).

Our PROGRESA estimates remain very similar when we apply this correction. In

applications where measurement error has larger effects, one may use corrections, or

use a different approach such as jointly modeling both stages of the method in a single

likelihood.

5 Broader Applications and Extensions

The PROGRESA example illustrates how our method can be used retroactively to

understand the priorities of an observed allocation policy. It thus provides a type of

‘value audit’, which can reveal the values consistent with an implemented policy. These

values can then be compared to the values of constituents, or the stated objectives of

policymakers.

The same technique can be used prospectively, to help policy designers iteratively

improve the alignment between their values and the values implied by the policies they
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adopt. This requires a first step that estimates how much different households would

benefit from the policy. In the PROGRESA case, for example, we use data from the

first phase of the program roll-out to estimate treatment effect heterogeneity; these

results are shown in Figure 2. Then, for any prospective policy proposal — which

need not be implemented — our method can be used to estimate welfare parameters

implied by that proposed policy. For instance, column 2 of Table 2 illustrates how

a 2003 update to the original PROGRESA poverty score placed higher weight on

wealthier households. Finally, the method can help course-correct, to better align

future policies with stated preferences. In our example, this is most directly illustrated

in Table 3, which shows the policies that would result from counterfactual preferences.

The method can be applied in a variety of settings. For instance, medical inter-

ventions are often scarce; given knowledge about the heterogeneous effects of these

treatments, our approach can provide insight into the welfare weights implied by

different proposed allocation policies. Likewise, a marketing agency may be interested

in targeting promotions to customers who are likely to respond along multiple margins,

such as specific purchases or longer-term retention, while also prioritizing specific

consumer segments; our approach can help them translate from a menu of possible

campaigns to the preferences and values implied by each one.

What do these diverse settings have in common? We identify three main elements

that are necessary for our framework to be applied. The first requirement is a practical

one: our framework requires an understanding of the (potentially heterogeneous)

impacts of a policy on one or more outcomes, in order to obtain the ∆v̂ij in the first

estimation step.19 These are easiest to estimate when there is a pilot where treatment is

randomly assigned to a representative subset of the population of interest; this was the

case with PROGRESA, and our analysis in Section 4 shows how to apply the framework

in this canonical setting. Absent a randomized intervention, it may be possible to use

19Note that private parties may desire to allocate treatment to people who have high outcome levels,
rather than those who would see the highest impacts (e.g., an employer may hire candidates who will
have the highest performance, not those whose performance would benefit the most from a job offer).
In such cases, our method could be used with two alterations: the welfare function (equation (1))
would sum only over treated (hired) individuals, and as a result one would replace ∆v̂ij in equation (3)
with the predicted outcome that would result if i were treated, v̂ij(1) = vij + (1− Ti)∆v̂ij . If one is
willing to assume that treatment effects do not differ between people (so that most heterogeneity
arises from levels), then one could replace this with an individual’s level vij , and could use a similar
approach without estimating treatment effects.
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non-experimental methods for estimating treatment effect heterogeneity (e.g., Kent

et al., 2020; Johansson et al., 2018), or even to extrapolate from existing evidence

on heterogeneous treatment of similar policies in similar environments. The second

requirement is that the implementer must define the outcomes and characteristics that

enter into the objective function. This decision has implications for both identification

(as discussed in Section 3.3) and for interpreting the downstream analysis (discussed

in Section 3.4). Third, the framework requires sufficient data and variation to identify

the key parameters of our model, which we discuss next.

5.1 Sample Size Considerations

The sample size requirements for implementing this approach will vary depending on

the amount of heterogeneity, noise, and the complexity of the specification of impact

and welfare weights. Using Monte Carlo simulations, we provide an example of how

error varies with the number of observations used to estimate treatment effects and the

ranking. Online Appendix Table S10 provides estimates of mean absolute error over

differing sample sizes, assuming treatment effects are linear in parameters and using

OLS for the first stage. These simulations suggest that so long as one has a sufficiently

large sample over which to estimate treatment effects, one can substantially improve

precision by simply observing more rankings between households. Since estimating

treatment effects may require running an experiment, such a Monte Carlo exercise can

help inform power calculations to ensure that the design is adequately powered both

for estimating treatment effects and to use our method to evaluate potential policies.

5.2 Interpretation Under Different Scenarios

Certain settings may require additional nuance in implementation and interpretation.

5.2.1 If Only an Allocation is Observed

In many settings, information about the allocation might be more limited than in

our benchmark case where a full ranking is observed. For instance, a tax policy may

only have a small number of brackets, or it may only be possible to observe a binary

allocation. This may reduce the variation available to estimate preferences, but in
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principle our method can still be used. In the PROGRESA example, column 4 of

Online Appendix Table S8 demonstrates that when our method is applied to a binary

allocation (z(xi) = 1{i eligible}), point estimates are similar to those reported in

Table 1. Although the point estimate for indigenous is positive, it is smaller relative

to the other coefficients than would be implied by the decision rule, and its confidence

interval nearly covers zero. Otherwise, most qualitative conclusions are the same.

5.2.2 Continuous Treatment

Our model considers a binary treatment given in rank order. One could extend

the framework to consider instead a treatment Ti ∈ [0,∞) that may be given in

varying quantities. Estimation would differ in two respects. In the first step, one

would estimate the slope of each component of utility with respect to the continuous

treatment,
dv̂ij
dTi

(the continuous analogue of ∆v̂ij). In the second step, one would solve

for the parameters that equate the marginal utility of each household i at the observed

transfer amounts T, from the perspective of the policy. For more details see Online

Appendix S1.3.

5.2.3 Externalities

The interpretation of the method’s estimates can change if treating one household

affects another household. We explore two stylized cases of how spillovers could arise:

Altruism i may value the utility of i′. Then, if i receives a treatment that ex-

pands their choice set, they may use that opportunity to help i′. For example, a

household receiving a cash transfer may share resources with its neighbors. In Online

Appendix S1.2.1, we derive a formula for ∆Si that generalizes to choice outcomes

with altruism. This formula includes terms for how treating i affects its transfers to i′,

∆δii′ , and each outcome j of i′, ∆vextii′j . In the PROGRESA example, there is evidence

that treated households share benefits with untreated households in the same village

(Angelucci and De Giorgi, 2009), mostly through transfers and loans. Such spillovers

would affect the interpretation of our results primarily if they were differential (so

that treating household i would have different spillovers than treating household i′); if

each household induced the same spillovers, the interpretation would remain mostly
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the same because the benefit of treating each household is similarly shifted. In the

case of PROGRESA, the experimental design allows only for the estimation of average

spillover effects, so we cannot empirically determine if spillovers were differential.20

Direct effects i may value the outcomes of i′, and thus their treatment status. For

example, school admission may take into account peer effects, or a vaccination strategy

may prioritize some individuals because of their propensity for contagion to sensitive

groups. When outcomes are choices, a policy may wish to correct for each household

undervaluing their impact on others. We derive the general formula for ∆Si with such

externalities in Online Appendix S1.2.2.

5.2.4 Manipulation

Households may have incentives to manipulate their reported characteristics x̃i in

order to be prioritized. If the ease of manipulating a characteristic differs between

households in unobserved ways, a policy that anticipates manipulation may place a

weight on it that differs from their preference, to account for manipulation (Frankel

and Kartik, 2018; Björkegren et al., 2020). We analyze the initial PROGRESA rule

as was implemented in a pilot, so we expect both manipulation by households, and

anticipation of manipulation by policymakers, to be negligible. However, manipulation

may be relevant in settings where the decision rule is publicized and households

are familiar with it. Extending this framework to invert the preferences implied by

strategy-robust decision rules is an interesting direction for future work.

5.2.5 Nonlinear Utility Functions

One can alternately consider utility functions of general form, ui(vi) from the perspec-

tive of the policy and ũi(vi) from the perspective of the household. Then, equation (9)

20Differential spillovers could be estimated with a more nuanced experiment that randomized the
composition of treated households by village: e.g., in some villages treating indigenous households
and others nonindigenous, and tracking how ineligible outcomes compare to those in controls where
no one is treated.
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generalizes to

∆Si ≈ w(xi)︸ ︷︷ ︸
≈ω(xi)

∑
j


(
∂ũi
∂vij
− 1{j∈Jchoice} ·

∂ui
∂vij

)
︸ ︷︷ ︸

≈βj(xi)

∆vij

+ φiηi + a︸ ︷︷ ︸
≈α(xi)


The interpretation generalizes from the previous linear case. βj captures the policy’s

marginal valuation of outcome j for nonchoice outcomes ( ∂ũi
∂vij

). For choice outcomes,

it will capture the difference ( ∂ũi
∂vij
− ∂ui

∂vij
). When ũi and ui are linear functions of

vi, then βj(xi) and α(xi) will correspond to the underlying objects. If they are

more nuanced functions, they will represent approximations. As we show in Online

Appendix Section S1.4, this linear approximation can affect parameter estimates if the

function actually has curvature. This suggests that one should attempt to measure

outcomes vi in metrics that enter utility approximately linearly.

5.2.6 Heterogeneous Treatment Costs

If the costs of treatment differ between households, the comparisons underlying our

method should be adjusted to account for this difference. For example, a policy might

treat a single high-cost household i or a combination of other low-cost households. If

one wishes to hit the budget constraint exactly, this becomes a combinatorial problem.

6 Conclusion

Policy discussions commonly revolve around the mechanics of implementation, rather

than more fundamental notions of utility and welfare weights. This paper demonstrates

a way to invert those discussions. We provide a method to recover the primitives

consistent with observed policies, using a model of preferences in conjunction with

methods for estimating heterogeneous treatment effects, and demonstrate how to

convert between welfare and allocation space.

Our main empirical example illustrates how our method can be used to understand

the priorities of an allocation policy: that is, we estimate the relative value that

PROGRESA placed on different household outcomes (e.g., education vs. health),

and calculate the implied welfare weights assigned to different types of households
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(e.g., poor vs. indigenous households). We show how this framework can be applied

to evaluate the policies that would be implied by counterfactual preferences, such

as different relative valuations of household outcomes. Beyond social assistance and

welfare policy, we expect that this framework will be relevant to a much broader range

of contexts where there is interest in understanding the values implied by a policy or

allocation, and in designing policies to better align with values.

This framework could be used in several ways. To begin, it could be used to

characterize the realized allocations of an existing program, to provide an indication

of the preferences they imply. This, in turn, can provide a way to audit existing

programs, to help hold policymakers accountable for past decisions – and in particular,

to evaluate whether an implemented allocation reflects the stated goals of the policy,

or the preferences of constituents. Perhaps most importantly, this approach can be

used to adjust proposed policies to better align with those goals.
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S1 Model Extensions

S1.1 Choice Model

The household’s optimization of equation (7) yields first order conditions

b̃ijg
′
j(yij) = ηi

∂c

∂yij
(S1)

The policy considers the utility of the household according to equation (2). If, for the

moment, we consider infinitesimal changes in treatment status (Ti), the derivative of utility

from the policy’s perspective with respect to treatment is

dui
dTi

=
∑
j

[
bijg

′
j(yij)

] dyij
dTi

+ a.

Adding and subtracting each side of equation (S1), we obtain

dui
dTi

=
∑
j

[
bijg

′
j(yij)− b̃ijg′j(yij) + ηi

∂c

∂yij

]
dyij
dTi

+ a.

Recognizing that the budget constraint enforces that
∑

j
∂c
∂yij

dyij
dTi

= φi, we obtain

dui
dTi

=
∑
j

[
bij − b̃ij

]
g′j(yij)

dyij
dTi︸ ︷︷ ︸

≈∆vij

+ηiφi + a.

When we allow for welfare weights and approximate derivatives with their discrete

counterparts, we obtain the generalized equation (9) for ∆Si.

S1.2 Externalities

S1.2.1 Altruism

This section derives equations for rankings in cases where households share benefits with each

other, as would occur with altruistic households. We first consider the household problem.

Outcomes are functions of choices, so that each household i chooses yij , for each j, similar to

Section 3.4. Each household i may also choose to contribute amount δii′ ≥ 0 to household i′.
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Household i receives utility from its own outcomes, as well as from the outcomes of others,

ũi =
∑
j

b̃ijgj (yij) + ã · Ti +
∑
i′ 6=i

w̃ii′

w̃ii

∑
j

b̃i′jgj (yi′j(T, δ−i′))

subject to the constraint

c(yi) +
∑
i′

δii′ = µi + φiTi +
∑
i′

δi′i(T, δ−i′)

where w̃ii′ represents the welfare weight i places on the utility of i′. Let ηi represent the

Lagrange multiplier on i’s budget constraint.

The first order conditions for yij yield the same equation (S1) as without altruism, but

transfers δii′ now link the utilities of households; for any pair i and i′,

ηi ≥
w̃ii′

w̃ii
ηi′

where the inequality arises because transfers must be nonnegative. Together with the budget

constraint, these equations define δii′(T) and yij(T).

Given household choices, we assume that the policy selects the vector of treatment statuses

T jointly, to maximize S as defined in equations (1) and (2). From the perspective of the

policy, the marginal value of treating i includes the effects on i (as in equation (9)), but now

also includes spillover effects

dS

dTi
(T) =

∑
i′

wi′
∑
j

[
bi′jg

′
j(yi′j(T))

] dyi′j
dTi

(T) + a,

where wi′ represents the welfare weight that the policy places on i′. The value of treating i′

becomes a function of the treatment status of all households, T, a nuance we will return to.
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The equation can be rearranged as follows

dS

dTi
(T) =wi

∑
j

[
bijg

′
j(yij(T))

] dyij
dTi

(T) + a

+
∑
i′ 6=i

wi′
∑
j

[
bi′jg

′
j(yi′j(T))

] dyi′j
dTi

(T)

=wi

∑
j

[
(bij − b̃ij)g′j(yij(T)) + ηi(T)

∂c

∂yij
(T)

]
dyij
dTi

(T) + a


+
∑
i′ 6=i

wi′
∑
j

[
(bi′j − b̃i′j)g′j(yi′j(T)) + ηi′(T)

∂c

∂yi′j
(T)

]
dyi′j
dTi

(T)

=wi

∑
j

(
bij − b̃ij

)
g′j(yij(T))

dyij
dTi

(T)

+ ηi(T)

[
φi −

∑
i′

(
dδii′

dTi
(T)− dδi′i

dTi
(T)

)]
+ a


+
∑
i′ 6=i

wi′

∑
j

(
bi′j − b̃i′j

)
g′j(yi′j(T))

dyi′j
dTi

(T)

+ ηi′(T)
∑
i′′

[
dδi′′i′

dTi
(T)− dδi′i′′

dTi
(T)

]
where the last line recognizes that the budget constraint enforces that

∑
j

∂c
∂yij

dyij
dTi

= φi +∑
i′

(
∂δi′i
∂Ti
− ∂δii′

∂Ti

)
and

∑
j

∂c
∂yi′j

dyi′j
dTi

=
∑

i′′

(
∂δi′′i′
∂Ti
− ∂δi′i′′

∂Ti

)
. The equation accounts for all of

the changes in transfers that result when i receives treatment. It can be approximated as

∆Si(T) ≈

Gross benefit to i︷ ︸︸ ︷
wi

(∑
j

[(
bij − 1{j∈Jchoice} · b̃ij

)
∆vij(T−i)

]
+ φiηi(T) + a

)
(S2)

+
∑
i′ 6=i

wi′
∑
j

[
(bi′j − 1{j∈Jchoice}b̃i′j)∆v

ext
ii′j(T−i)

]
︸ ︷︷ ︸

Spillover internalities

(S3)

+
∑
i′ 6=i

[
−wiηi(T)∆δi:ii′(T−i) + wi′ηi′(T)

∑
i′′

∆δi:i′′i′(T−i)

]
︸ ︷︷ ︸

Spillover transfers

(S4)

The first term captures gross benefits to household i, which are equivalent to equation (9)

evaluated at T. The second term captures internality benefits from altruism to each other

household i′, and the third term captures the welfare effects from net transfers on the budget

constraint. ∆δi:i′i′′(T−i) represents the change in transfers from i′ to i′′ when i changes from

untreated to treated.1

Note that the policy may prefer not targeting a household that is altruistic, if that

household values other households very differently than the policy. To see this, note that the

1This equation represents the difference between the welfare at Ti = 1 and at Ti = 0, but because values
η(T) are approximated around a given value of Ti, the overall equation is a function of T, not just T−i.
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last term will depend on the correlation between the policy’s preferences over households, and

transfers (which will depend on the treated household’s preferences). Altruism will lower the

ranking of a household i if it would make net transfers to households i′ (∆δi:ii′ −∆δi:i′i > 0)

which the policy prefers less (wiηi > wi′ηi′).

The adjusted equation (S2) provides a starting point to extend our method. One would

need to measure the impacts of treating household i not only on itself ∆vij(T−i), but also on

other households, on both outcomes ∆vextii′j(T−i) and transfers ∆δi:i′i′′(T−i). Those impacts

should be computed as a function of the treatment status of others, T−i.

A conceptual challenge arises because ∆Si(T−i) now depends on T−i, so its implied

ranking z(T) may also depend on who is ultimately treated. In practice, policies typically

report a single ranking z which does not depend on who is ultimately treated. However, a

single ranking can be rationalized with additional assumptions. One approach would be to

assume separability, so that the marginal benefit of treating each household does not depend

on others’ treatment status, ∆Si(T−i) ≡ ∆Si. Alternately, one could assume the T under

which the ranking z is evaluated: for instance, that the ranking is consistent with the final

allocation T. A challenge is that estimating these objects would require a sophisticated

experiment, which may need to be informed by the end result (the treatment allocation T).

Spillovers in PROGRESA The PROGRESA experiment, which randomized eligibility

at the village level, measures a slightly different object. Imagine i indexed households within

a village, ordered by decreasing score zi, with i∗ being the cutoff household, so that that

household and all below receive benefits. The design estimates the effect on each eligible

i ≤ i∗ household of treating itself and other eligibles in the village: Ei≤i∗ [vij(T≤i∗)− vij(0)]

for T≤i∗ = [1, ..., 1︸ ︷︷ ︸
i∗

, 0, ..., 0︸ ︷︷ ︸
N−i∗

]. This corresponds to the ∆vij we estimate in Section 4. In a

model without spillovers, this object does not depend on the treatment status of others, T−i.

Using the same experiment, Angelucci and De Giorgi (2009) introduce two additional

measures, which capture the average effect on ineligible households i′ > i∗ of treating all

eligible households i. One measure, which we denote by ∆vextii′j(T≤i∗), captures average impacts

on consumption, mimicking Ei′>i∗ [vi′j(T≤i∗)− vi′j(0)]. The second, Σ∆δi′′:ii′(T≤i∗), captures

the average impact on the transfer received by i′, mimicking Ei′>i∗ [
∑

i(δii′(T≤i∗)− δii′(0))].

One can assume that if i were to become treated, incoming transfers would decrease by an

equivalent amount. Note, however, that these estimated effects do not differ based on the

characteristics of which i is treated, since they compare treated villages, where all eligibles

i ≤ i∗ are treated, to control villages, where none are. These estimates are thus constant
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across i, and so would have only a minor effect on ∆Si(T−i) and the ranking it implies.2

Given a different experimental design, our approach could be further extended to test

for altruism. In particular, if a pilot randomized the type of person i in each village that

was treated, and measured the pairwise transfers between each i′ and i′′, we could estimate

∆vexti′ij(T−i′) and ∆δi:i′i′′(T−i′) as a function of T−i′ . Viviano (2023) proposes additional

experimental designs that could better account for spillovers.

S1.2.2 Direct Effects

The choices of households could also differ from those preferred by the policy if household

i’s outcomes directly affect another household i′’s utility. This may lead households to

undervalue their impact on other households.

From the perspective of the policy, household i’s utility is given by

ui =
∑
j

bijgj(yij) + a · Ti +
1

N − 1

∑
i′ 6=i

∑
j

dii′jgj(yi′j)

where dii′j represents the value i receives from i′’s outcome j (from the perspective of the

policy).

From the perspective of the household i, utility is similar

ũi =
∑
j

b̃ijgj(yij) + ã · Ti +
1

N − 1

∑
i′ 6=i

∑
j

d̃ii′jgj(yi′j)

where d̃ii′j represents the value i perceives it receives from i′’s outcome j. For nonchoice

variables j /∈ Jchoice, yij is a mechanical function of Ti as before. For variables j ∈ Jchoice, i
selects yij to maximize ũi subject to the budget constraint (equation (8)). Because it does not

internalize its effects on others, the household faces the same first order condition as before,

equation (S1), and makes the same choices, regardless of its perception of externalities.

2In particular, the ranking implied by equation (S2) with altruism would differ from the ranking implied by
(9) in a few respects. The spillover transfers term would be identical except for wiηi(T−i): that is, although
it assumes the same amount of transfer from each i and the same benefits to each i′, it would account for
different opportunity costs of that transfer from each i based on different welfare weights and constraints.
Each element of the spillover internalities term would be identical but the sum will swap out the treated
household i and so would differ by one element. Although this may affect the results, it does not capture a
primary force that would cause spillovers to alter allocations: that targeting different households may yield
different spillovers.
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The policy then views the utility of treating i as

∆Si ≈
∑
j

∆vij

w(xi)
(
bij − 1{j∈Jchoice}b̃ij

)
+

1

N − 1

∑
i′ 6=i

w(xi′)di′ij︸ ︷︷ ︸
Externalities

+ w(xi) [ηiφi + a]

(S5)

which now includes a new term representing the externality on others i′. Without restrictions

on externalities d, this new term complicates estimation because the policy’s impact on

i, ∆vij may now be multiplied by a combination of the welfare weights on all households.

However, in cases with sufficiently simple structure on externalities d, direct application

of our method yields results with a straightforward interpretation. Consider the following

examples:

If there are positive externalities solely within groups of households that share the same

welfare weights, such that dii′j ≡ 0 for any w(xi′) 6= w(xi), then our method will estimate a

β that combines weights on externalities as well as any internalities.3

Alternately, if i’s outcome only matters to households in one group, then the welfare

weights can be interpreted as the weights on that group. For example, consider a vaccination

strategy for a contagious disease. Imagine the vaccine does not affect the utility of the

people who receive it (so that bij ≡ b̃ij ≡ 0, and φi = a = 0), but mechanically benefits

the susceptible people they are in contact with, with a potentially different effectiveness

for each target (∆vij). Each person i is in contact with the same number of susceptible

people (n), who are of only one type (dii′j ≡ d > 0 for a subset of i′’s with identical xi′ , and

dii′j ≡ 0 for others; for example, nurses and nursing home staff have contact with elderly

people). If our method is estimated on the allocation policy, ∆vij will capture the differential

effectiveness on different potential vaccination recipients, w will estimate the welfare weight

on the different types of susceptible people they are in contact with, and βj will estimate the

average externality ( 1
N−1

∑
i′ 6=i di′ij = nd

N−1
).

S1.3 Continuous Treatment

If treatment is continuous and not binary, the policy selects Ti ∈ [0,∞) for each i. Utility

from the perspective of the policy can still be written as in equation (2), with Ti redefined as

continuous, but the procedure changes in two ways.

3In that case, βj(xi) will approximate
(
bij − 1{j∈choice}b̃ij

)
+ 1

N−1
∑
i′ 6=i w(xi′)di′ij .
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First, rather than estimating the effects of treatment as the difference vij(1) − vij(0),

we seek to estimate each function vij(T ), which we assume is concave. Given experimental

variation in T that is not just binary, we can obtain estimates of the slope,
dv̂ij
dT

. Imposing a

functional form, such as the quadratic vij(T ) = cj(x̃i)T − 1
2
dj(x̃i)T

2, can simplify estimation.

Second, in an optimal allocation T, the marginal returns from the perspective of the

policy across individuals will be equated,

∂Si
∂Ti

= w(xi) ·

(∑
j

bij
dvij
dTi

+ a

)
≡ ξ

to a constant we call ξ.

Given estimates of these returns
dv̂ij
dTi

, one can then estimate ω, β, and α to minimize the

distance to some constant return ξ at the observed treatment levels T,

ω(xi) ·

(∑
j

βj(xi)
dv̂ij
dTi

+ α(xi)

)
≡ ξ.

With quadratic utility, for instance, this yields

ω(xi) ·

(∑
j

βj(xi)
[
ĉj(x̃i)− d̂j(x̃i)Ti

]
+ α(xi)

)
≡ ξ.

Since these objects can be scaled arbitrarily we can simply select a convenient scale; e.g.,

ξ = 1. This recovers the welfare weights ω, the weights on different outcomes β, and the

benefit irrespective of outcomes α.

S1.4 Generalized Curvature in Utility Components

If utility functions are assumed to be linear (ĝj(y) = y) but the true utility functions gj(y)

have curvature, the true impact of the program on utility component j is then:

∆vij = gj(y
1
ij)− gj(y0

ij)

Taking a Taylor approximation from the factual level yij, we have gj(yij + δ) ≈ gj(yij) +

δ · g′j(yij). Thus for any gj(·) we have:

∆vij ≈ gj(yij)− gj(yij) + ∆yj(x̃i) · g′j(yij) = ∆yj(x̃i) · g′j(yij)
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We can then express the utility benefit of treating i in a nonchoice setting as:

∆Si ≈ w(xi)︸ ︷︷ ︸
ω(xi)

∑
j

bijg
′
j(yij)︸ ︷︷ ︸

βj(xi,{yij})

∆̂yj(x̃i) + a


This implies that if we do not specifically account for curvature and estimate a linear model,

the welfare and impact weights we estimate (ω and β) are approximately a combination of

the underlying welfare and impact weights (w and b), respectively, and any curvature in

the utility functions (g′j), as long as the baseline value of the outcome (yij) is included as a

characteristic along which these weights can vary (xi). If the true utility is linear, then ω

coincides with w and β with b. Otherwise, utility curvature multiplies the weights.

S2 Identification

This section discusses conditions that are sufficient for nonparametric identification of ω(·),
β(·), and α(·). The parametric functional form in the paper permits slightly different

assumptions.4

Let x̃ = (x,x+), so that x̃ includes the covariates in x as well as excluded covariates

x+. Let J be some fixed integer and assume that for j = 1..J , ∆vj(x,x
+) is some known,

observed function. For some unknown functions f(·), ω(·), βj(·), α(·), and some errors ε, our

data generating process is given by

zi = f

[
ω(xi)

(
J∑
j=1

βj(xi)∆vj(xi,x
+
i ) + α(xi)

)
+ εi

]

= f

[
J∑
j=0

ψj(xi)∆vj(xi,x
+
i ) + εi

]
= f

[
g(xi,x

+
i ) + εi

]
where ∆v0(xi,x

+
i ) ≡ 1 and{

ψj(xi) := ω(xi)βj(xi) ∀j = 1, . . . , J

ψ0(xi) := ω(xi)α(xi)

and g(xi,x
+
i ) :=

∑J
j=0 ψj(xi)∆vj(xi,x

+
i ).

4We are grateful to Yassine Sbai Sassi for invaluable assistance in developing these arguments.
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Our identification argument proceeds in two steps. We first present sufficient conditions

to identify g and ψj (Theorem 1), which relies on econometric assumptions. We then discuss

how ω, βj , and α could be recovered from ψj , which requires restrictions justified by economic

theory.

S2.1 Assumptions

Exogeneity

ε ⊥ (x,x+)

Regularity/Smoothness

R1) ω, β and α are continuously differentiable

R2) f is strictly increasing and continuously differentiable

R3) ε has a continuous distribution, with a continuous positive density fε > 0

R4) The support of z is an interval (not necessarily bounded)5

R5) (x,x+) has a continuous distribution

R6) For any fixed x, the function ∆vj(x, ·) is continuously differentiable and square integrable

for all j (i.e. E(∆vj(x,x
+)2) <∞).

Identification

I1) For almost all x1 there exist x+
1 and x+

2 such that g(x1,x
+
1 ) 6= g(x1,x

+
2 )

I2) For any given x: (1,∆v1(x, ·), . . . ,∆vJ(x, ·)) is linearly independent (as a family of

functions, with the first element 1 being the constant function equal to 1)6,7

I3) E(ε) = 0 and V ar(ε) = 1.

5This condition would be redundant if we assume ∆v is continuous and (x,x+) and ε are supported on an
interval.

6Formally, linear independence here means that for all x and for all scalars λ0, . . . , λJ :[
∀x+ :

∑
j λj∆vj(x,x

+) = 0
]
⇐⇒ λ0 = 0, . . . , λJ = 0

7Assumption I2) is weaker than alternate assumption I2’): for any x, there exist x+
0 . . .x

+
J such that the

matrix
(

∆vj(x,x
+
j′)
)
0≤j≤J,0≤j′≤J

is of full rank.
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Note that these assumptions are slightly different than we use for the parametric estimator

in the paper. This proof for general functions g requires f to be a strictly increasing function

(making ties in rankings z unlikely); for the linear g used in the paper it may be possible to

relax this.

S2.2 Identifying the ψ’s

Theorem 1. Assuming exogeneity and under conditions R1 to R6, I1 to I3, the functions

ψj, for j = 1..J are identified. ψ0 is identified up to a uniform translation.8

Proof. The proof proceeds in two steps: first we show that under the theorem’s assumptions,

the function g is identified; second, we show that, knowing g, and under our assumptions on

∆v, ψ is identified.

By I1, the support of z contains more than 2 points. Without loss of generality, assume

0 and 1 are in that support.9 Let a and b be two arbitrary (fixed) scalars with a > b and

assume f−1(0) = a and f−1(1) = b. We begin by showing that for any such known a and b,

f and g are identified.10 We then establish that given assumption I3), the functions f and g

are identified up to a uniform translation.

We show that in the model:

z = f
(
g(x,x+) + ε

)
with f−1(0) = a and f−1(1) = b, the functions f and g are identified. For that, we check that

our assumptions imply the assumptions of Corollary 1 in Chiappori et al. (2015):

• Assumption A1: Follows immediately from exogeneity and assumption R3.

• Assumption A2: Follows from exogeneity and assumption R5.

• Assumption A3: Follows from R4, the assumption that 0 is in the support of z is

not necessary as pointed out in Chiappori et al. (2015).

• Assumption A4: f being continuously differentiable and (strictly) increasing (R2), its

derivative is strictly positive and therefore its inverse is also continuously differentiable.

• Assumption A5: Follows from R1 and R6 and the fact that g(x,x+) :=
∑J

j=0 ψj(x)∆vj(x,x
+).

8In fact, one can show the function f and the density fε are also identified under the same assumptions.
9Any other points in the support would work similarly.

10Which means that we should index f and g by a and b at this point. We omit that for notational ease.
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• Assumption A6: Following Chiappori et al. (2015) (equation 5), defineφi(z|x,x
+) := −∂g(x,x+)

∂xi
fε(f

−1(z)− g(x,x+)) for i ≤ dim(x)

φi+dim(x)(z|x,x+) := −∂g(x,x+)

∂x+i
fε(f

−1(z)− g(x,x+)) for i ≤ dim(x+)

Assumption A6 requires that there exists some i = 1..dim(x) + dim(x+) and there

exists (x,x+) such that φi(z|x,x+) = 0 for all z. Given that by assumption R3, fε > 0,

therefore [∃z : φi(z,x,x
+) = 0] ⇐⇒ ∂g(x,x+)

∂xi
= 0 so the set of points (x,x+) such that

φi(z,x,x
+) = 0 is non empty for some i by assumption I1.

• Assumption A7: Since both x and x+ are exogenous, the assumption is satisfied in

our setting.11

Therefore, g is identified. By assumption I2, this implies that ψj is identified for j =

0..J . To show that formally, fix x and note that by the linear independence of the family

(∆vj(x, ·))Jj=0 (I2) and the fact that (∆vj(x, ·))Jj=0 are all square integrable (R6), then they

form a base for a finite dimensional Euclidean space with the usual inner product in L2:

< ∆vi(x, ·),∆vj(x, ·) >= E(∆vi(x,x
+)∆vj(x,x

+)). A well known result from linear algebra

is that the Gram matrix G(x) := (< ∆vi(x, ·),∆vj(x, ·) >)0≤i≤J,0≤i≤J is invertible (i.e. of full

rank J + 1) if and only if the family (∆vj(x, ·))Jj=0 is independent (see for instance Horn and

Johnson (2012) theorem 7.2.10).

Denoting ψ(x) := (ψ0(x), . . . , ψJ(x))′, note that

G(x)ψ(x) = (E(∆v1(x,x+)g(x,x+)), . . . , E(∆vJ(x,x+)g(x,x+)))′

therefore

ψ(x) = G(x)−1(E(∆v1(x,x+)g(x,x+)), . . . , E(∆vJ(x,x+)g(x,x+)))′

which identifies ψ(x) as desired.12

Finally, remember that all the objects identified thus far - f , g and ψj - are identified

up to a choice of pre-images a and b. Let’s assume two such pre-images (a, b) and (ã, b̃)

11To formally check that, one can add some “virtual” unrelated regressor ζ (say an independent coin flip)
to the set of regressors that we label as “the potentially endogenous regressor” X−I := ζ, following Chiappori
et al. (2015)’s notation. Then we let the instruments be Z = X−I = ζ. This would allow us to identify g as
a function of all regressors, including X−I . However, given that by construction, X−I is a independent of
everything else, g is independent of X−I (or ζ).

12If instead of I2), we use the stronger assumption I2’) introduced in the footnote from last page, then
identifying ψ would not require that we go through the theorem on Gram matrices.
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rationalize our data and prove they must be equal.

Our data is generated by the two (statistically indistinguishable) models:

f−1
a,b (z) = ga,b(x,x

+) + εa,b

and

f−1

ã,b̃
(z) = gã,b̃(x,x

+) + εã,b̃

Define the function Θ by Θ = µ + λf−1
a,b , with λ :=

f−1

ã,b̃
(1)−f−1

ã,b̃
(0)

f−1
a,b (1)−f−1

a,b (0)
= ã−b̃

a−b and µ :=

f−1

ã,b̃
(0)− λf−1

a,b (0) so that Θ(0) = f−1

ã,b̃
(0) = ã, Θ(1) = f−1

ã,b̃
(1) = b̃ and :

Θ(z) = µ+ λga,b(x,x
+) + λεa,b

therefore, by our earlier identification result, it must be that Θ = f−1

ã,b̃
, i.e. f−1

ã,b̃
= µ+ λf−1

a,b .13

By exogeneity and assumption I3): V ar(εa,b|x,x+) = V ar(εã,b̃|x,x+) = 1 hence:

V ar(f−1
a,b (z)|x,x+) = V ar(f−1

ã,b̃
(z)|x,x+) = 1

however, since f−1

ã,b̃
= µ + λf−1

a,b , we get that λ2 = 1, or λ = 1 (because λ > 0), implying

f−1

ã,b̃
= µ+ f−1

a,b . Likewise, gã,b̃ = µ+ ga,b, which, according to our identification result on the

ψ’s, implies that ψ0,ã,b̃ = µ+ ψ0,a,b.

Considering this second step, note that in absence of such an exclusion restriction, the

ψj ’s are not identified. To see this clearly, note that if x+ = ∅, then any function g(xi) could

be equally well explained by setting ψ0(xi) = g(xi) and ψ ≡ 0 for j ≥ 1. Separating the

contribution of the different ψj’s requires variables x+ to affect g but be excluded from the

ψj’s.

S2.3 Recovering ω, α and the βj’s

Given theorem 1 and that{
ψj(x) := ω(x)βj(x) ∀j = 1, . . . , J

ψ0(x) := ω(x)α(x)

13Importantly, note that the identification result we established does not rely on the assumption V ar(ε) = 1.
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it becomes clear that the identification of ω, β, and α requires some additional “normalization”

assumption to remove the extra degree of freedom in the specification. From an econometric

standpoint, the choice of normalization is arbitrary, but the properties of the functions of

interest ω, α and the β’s are affected by the choice (such as their magnitudes, signs, or

curvature/dispersion). Thus, the choice of normalization should be dictated by economic

theory.

In the empirical application we apply the following normalization:

Normalization 1: βj(x) ≡ βj for all j, α(x) ≡ α, |α| = 1, and ω(x) > 0. The impact

weights are the same across households (βj(x) ≡ βj for all j) and are normalized relative to a

constant base value (α(x) ≡ α with |α| = 1). This base value may be positive (making the

program a good) or negative (making it a bad). Homogeneity in impact weights implies that

if two households would attain the same impacts from the program, but are ranked differently,

the difference must come from welfare weights. Welfare weights are positive ω(x) > 0, so

that the program may not be a good for some households and a bad for others.

One could also use alternate assumptions to ease this restriction, for example:

Normalization 2: βj(x) ≡ βj for some j, and α(x) ≡ 1. This implies that the base

value of the program is assumed to be good, and at least one impact weight is homogeneous.14

When α(x) ≡ 1, the method identifies ψ0(x) = ω(x) + µ for some location shift µ. Then for

a constant βj, ψj(x) = ω(x)βj = βjψ0(x)− βjµ. We can then solve for βj and µ. Here, the

choice was arbitrarily made to set α ≡ 1; the choice could have been to set any other βj to 1

and the same discussion would ensue.

Other normalization assumptions may also be possible.

S3 Data Cleaning Process

The data for the evaluation of PROGRESA is composed of household survey responses from

a sample of 506 villages from seven states. Surveys were conducted in three different years: a

baseline survey was fielded in October 1997, and two follow-up surveys in October 1998 and

November 1999. However, the baseline survey included fewer questions, so we rely on the

later surveys for detailed information on household outcomes, only using information from

the baseline for data on pre-period income and select household characteristics. Villages were

14One could alternately assume it is a bad so that α(x) ≡ −1.
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randomly assigned to a treatment group that received the program at the beginning, or a

control group that received it two years later. For all households, a poverty index score was

computed; all households in treatment villages below a score threshold were eligible for the

program’s transfers.

We compute a measure of average household monthly per capita consumption based on

the survey responses. The October 1998 and November 1999 surveys ask households about

the quantity consumed, quantity purchased and amount of money spent on 36 common food

items, as well as expenditure for several non-food categories (in weekly/monthly/semi-annual

amounts). We use the information regarding quantity purchased and amount spent to

construct household-specific prices which are then multiplied by the quantity consumed (this

helps to account for the fact that households consume food that is self-produced in addition

to bought). If household-specific information is missing, we use locality, municipality or

state average prices (the finest level available). We follow Angelucci and De Giorgi (2009) in

counting each child as 0.73 people when computing per capita consumption.

S4 Preference Survey

We conducted a survey of Mexican residents to elicit their preferences for different allo-

cations of social welfare programs. We solicited responses to a survey from a nationally

representative sample of computer users in Mexico, through a Qualtrics survey panel (see

https://www.qualtrics.com/).

S4.1 Survey Design

After obtaining consent and an initial information screen, participants were asked their

preferences for allocating benefits to different types of households. The survey was given in

(Mexican) Spanish. First, respondents were asked to select, from a list, which attributes the

government should consider when prioritizing which households receive cash transfers (age,

income, household size, education, whether agricultural, indigenous, gender, and demographics

of each person in the household). Second, subjects were asked to make monetary allocation

decisions between different households using multiple price lists (see Figure S4 for an example).

In each, one focal attribute differed between the households, and two other control attributes

were held fixed. We randomized which controls were included, the order they were presented,

and the scale of the tradeoff.15 Each subject filled in one price list for each focal attribute.

15Each participant saw base tradeoff numbers multiplied by 1x, 2x, or 3x, selected at random.
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Third, for a particular household, subjects were asked to make allocation decisions between

directly obtaining money and improvements in education, child health, and consumption

using multiple price lists (see Figure S5). The description of the household included three

randomly selected control attributes. Fourth, subjects were asked about their preferences for

paternalism over childrens’ outcomes, on subjective Likert scales and on a quantitative scale.

Finally, subjects were asked for basic demographics.

S4.2 Estimation

We use the survey responses to estimate welfare weights γ and impact weights β. To identify

γ, we compare transfer amounts (where other impacts are assumed to be ∆gj(xi) = 0). If

individual i differs from i′ only in attribute k and the crossover point is a transfer to i of a

and to i′ of b, then

γ
xi,−k

−k γ
xi,k
k a = γ

xi′,−k

−k γ
xi′,k
k b

γk =

(
b

a

) 1
xi,k−xi′,k

We identify β in three steps. First, we hold fixed household attributes, and ask respondents

how that specific household would trade off a money payment against an impact on outcome

j, for each outcome. If the crossover point is a and ∆gj(xi) = b, then this identifies how

that household would trade off the outcome against a relaxation of the budget constraint,

b̃j/ηi = a/b. Second, we address the possibility that a policy might value outcomes differently

from the households themselves,16 which identifies the ratio bj/̃bj. Third, we combine these

estimates to form an estimate of the resulting weight in the decision rule for outcomes that are

choices, as in Section 3.4: βj = bj − b̃j ∝ 1
N

∑
i
b̃j/ηi (bj/̃bj − 1), where the latter is proportional

up to the factor ηi. These unscaled results are reported in Appendix Table S15. In Table 2

column 3, we scale the resulting coefficients so the average magnitude is the same as the

estimated coefficients.

16The survey contains a separate question about how much the government should care about the welfare
of children in low income households. This question allows respondents to select how much the government
should weigh childrens’ welfare on each outcome relative to parents. Possible choices range from half as much
as parents to twice as much as parents.
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S4.3 Subjective Results

In subjective responses, respondents voiced support for paternalism for children, and belief

in externalities. These were assessed on Likert scales to three prompts for each outcome, and

are summarized in Table S9. Overall, the majority of respondents agreed that some children

may require direct support from the government, and disagreed that it was enough to trust

parents to do what is best for children.

S4.4 Validation

The design included several checks to ensure that respondents took the survey seriously.

First, prior to the survey, participants were asked, ‘We care about the quality of our survey

data and hope to receive the most accurate measure of your opinions, so it is important to

us that you thoughtfully provide your best answer to each question in the survey. Do you

commit to providing your thoughtful and honest answers to the questions in this survey?’

Only participants who answered ‘I will provide my best answers’ were invited to continue

with the survey. Second, after reading the instructions, participants responded to five simple

questions to validate survey comprehension. In order to complete the study, participants

had to respond correctly. Third, the survey included controls to ensure that participants

spent adequate time on each question. The submit button for the main exercises appeared

only after a 5-second delay.17 Additionally, participants who were completing the survey too

quickly (less than half the median elapsed time in the pilot survey) were removed from our

sample, following a standard protocol used by Qualtrics. Fourth, in the final demographic

survey, respondents were asked to rate the following three statements along the same Likert

scale ranging from ‘Strongly Disagree’ to ‘Strongly Agree’: ‘I made each decision in this study

carefully’, ‘I made decisions in this study randomly’, and ‘I understood what my decisions

meant.’ A careful respondent should agree with the first and last statement but disagree

with the middle; agreement or disagreement with all statements reveals that a respondent

made careless decisions. We restrict the sample to only respondents who disagreed that they

had made decisions randomly. 96% of respondents agreed with the first and last statement,

and disagreed with the middle; 60% did so strongly.

There was an optional comment box at the conclusion of the survey; 47% of respondents

filled in a comment, suggesting high levels of engagement. Although some respondents used

17The implementation of this in Qualtrics made it possible for participants to advance if this time had
elapsed, even if a multiple price list question had not been answered. For this reason, a handful of participants
did not respond to all questions.
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the box to indicate some confusion with the user interface, several responded affirmatively to

the approach of basing policy on resident preferences, such as (translated to English):

• ‘Excellent survey. Hopefully it will help decide which households need more help.’

• ‘I hope this type of survey will be applied throughout the country so that it will be

implemented’

• ‘Let’s hope the government relies on the results’

• ‘I hope that there will be more surveys on these and that public resources will actually

be allocated for infant feeding and education supporting single parents.’

• ‘I thought it was very important because it makes you reflect on the families and needs

that exist in the country’

• ‘Very good study but they should do one for people between 20 and 58 years old

especially with disabilities who are the most forgotten and vulnerable groups...’

S5 Treatment Effect Specification

S5.1 Causal Forests

Our framework allows for treatment effects estimated using alternate methods. In this

section, we present results using an alternative estimator to demonstrate this flexibility and

robustness.18 Causal forests (Wager and Athey, 2018) allow treatment effects to differ more

flexibly according to household covariates than in the baseline OLS model.

Figure S3 shows the distribution of treatment effects estimated using causal forest across

several outcomes. Feature importances are presented in Table S3, which show that impacts

on log consumption covary especially strongly with indigenous status, similar to our OLS

estimates (Table S2) and Djebbari and Smith (2008).

Most importantly, when we use the estimates of treatment effects from causal forests as

∆v̂j in our framework, the primitives that are subsequently estimated are similar to those

based on the OLS estimates. This comparison is done in Appendix Table S8 (i.e., comparing

column 1, which uses OLS, to column 3, which uses causal forests). We also present causal

forest versions of exhibits that parallel our full set of main exhibits and robustness checks in

Section S6.

18Note that we keep the variable set consistent across estimators, and only change the first stage estimator.
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S5.2 Assessing Attenuation and Misspecification

Our second-stage estimator uses first-stage predictions as covariates in a plug-in estimator.

To assess the possibility that measurement error in first-stage estimates could bias second-

stage estimates, we use Monte Carlo simulations inspired by our empirical setting. Results

are shown in Table S11. The first column reports how treatment effects are estimated:

either known (no first stage error), OLS (corresponding to our main empirical method),

or OLS+SIMEX (an error-corrected version we describe below). We assess results under

complex specifications (KTrue = KEst = 22), simple specifications (KTrue = KEst = 5), and a

misspecification where the true specification is complex but the estimated model is simple

(KTrue = 22 but KEst = 5). Bias and absolute error increases when treatment effects must be

estimated. However, bias is relatively small when the specification is complex; it is slightly

larger when the estimation specification is simple (regardless of whether the DGP is simple

or complex).

We next test the SIMEX (SIMulation EXtrapolation) procedure of Cook and Stefanski

(1994) to correct for measurement error in first-stage estimates, following the implementation

of Chilet (2017). The procedure adds a series of different amounts of noise to the first stage,

estimates the second stage for each, and then extrapolates to the second stage the estimates

that would result if noise were altogether removed from the first stage. We apply SIMEX in

three steps:

1. First, for each of our heterogeneous treatment effect dimensions, we add simulated

normal measurement error εij to each ∆v̂ij, where εij is drawn from the distribution

N(0, ζ · σ2
ij), for ζ ∈ {0, 0.5, 1, 2}, and where σ2

ij is the jth entry of the Jx1 prediction

variance σ2
i of our first-stage estimates for that particular observation i. We approximate

this variance using the covariance matrix of the first stage coefficients, taking σ2
i = x̃iΣj ,

where Σj is the covariance matrix of the first-stage coefficients and x̃i is the row of first-

stage covariates corresponding to observation i. Because this only accounts for variance

in the parameters, it is likely to underestimate the total error and thus moderate the

correction. We take 25 independent draws r of measurement error for each ζ, and then

estimate second stage models using ∆v̂ijr = ∆v̂ij + εijr as our first-stage data for each

given draw.

2. Second, for each second-stage parameter, we estimate the estimated parameter value as

a quadratic function of ζ, based on the 25× 4 = 100 observations of second-stage model

estimates for each ζ across 25 draws. This estimated quadratic model over ζ gives us a
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smooth function, fθ(ζ), of how each second-stage parameter θ estimate changes with

measurement error, for θ ∈ {β, ω, α}.

3. Then, θSIMEX = fθ(−1) corresponds to the estimate of parameter θ, removing the

forecasted impact of measurement error (as captured by the covariance matrix).

When we apply this SIMEX procedure in Monte Carlo simulations, it reduces bias in

estimates arising from first-stage measurement, particularly in β, as shown in Table S11. The

gap between the standard and SIMEX estimates may thus be helpful as a diagnostic for the

amount of bias.

We apply SIMEX to the PROGRESA application in Table S12. An illustration of

the estimated function and the average second-stage parameter estimates is presented in

Figure S6. We find that coefficient estimates are qualitatively similar regardless of whether

SIMEX is applied. The SIMEX estimates yield slightly larger and more-significant weights

on indigenous status and log consumption, suggesting that our main estimates may be

slightly conservative due to modest attenuation bias. Given how modest this correction is, we

maintain the standard OLS specification as our main first-stage specification. In applications

where estimates are more substantially affected, one might use a bias correction for first stage

measurement error.
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S6 Additional Tables

Table S1: Descriptive Statistics (Midline)

October 1998 mean

Head of household:

... Is indigenous 0.38

... Age 41.61

... Education (Middle school or higher) 0.07

... Is male 0.94

... Is an agricultural worker 0.63

Household size

... Number of children less than 6 years old 1.93

... Number of children 6-16 years old 2.76

... Number of adults 17+ years old 3.12

Log monthly average per capita consumption (log pesos) 5.10

Average number of days a school-age child misses school 0.32

Average number of days a young child is sick 1.08

Assigned to treatment group 0.60

N 7430

Notes: Table shows midline statistics (October 1998) for households present in our endline
estimation sample (November 1999), among households surveyed in both. Sample restricted
to households with children in the relevant age categories for health and schooling at endline
(at least one child of age 0-5 y.o. and at least one 6-16 y.o.). Middle school education defined
as 8 years or more of education. Number of days a young child is sick, and number of days a
school-age child misses school, are computed as an average over the number of children in the
respective age group in the household.
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Table S2: Treatment Effect Coefficient Estimates: OLS

Log Consumption Schooling Health

(Monthly avg. per

person, in pesos)

(Avg. days school

missed per child)

(Avg. sick days per

child)

Treatment 0.1289 (0.123) -0.3548 (0.246) -0.7254 (0.447)

Treatment X head indigenous 0.1539 (0.029) 0.0336 (0.058) 0.0502 (0.105)

Treatment X log(Income 1997) -0.0097 (0.022) -0.0095 (0.043) 0.0614 (0.079)

Treatment X num adults -0.0341 (0.041) 0.0053 (0.082) -0.1029 (0.149)

Treatment X head age 0.0005 (0.002) 0.0078 (0.004) 0.0032 (0.006)

Treatment X head education 0.0128 (0.062) 0.1207 (0.124) -0.0819 (0.225)

Treatment X male head of household -0.0263 (0.068) 0.0962 (0.135) 0.1592 (0.245)

Treatment X head agricultural worker 0.0373 (0.031) -0.1063 (0.062) -0.0795 (0.112)

Treatment X num child less than 2 yrs -0.0271 (0.017) 0.0961 (0.034) 0.0096 (0.062)

Treatment X num child 3 to 5 yrs -0.0288 (0.02) -0.0562 (0.04) 0.107 (0.073)

Treatment X num child 6 to 10 yrs 0.0421 (0.016) 0.0116 (0.031) -0.0124 (0.057)

Treatment X num boys 11 to 14 yrs 0.0116 (0.022) -0.045 (0.045) -0.0085 (0.081)

Treatment X num girls 11 to 14 yrs 0.0173 (0.022) -0.0269 (0.045) 0.0443 (0.081)

Treatment X num boys 15 to 19 yrs -0.0161 (0.039) 0.0085 (0.079) 0.0187 (0.143)

Treatment X num girls 15 to 19 yrs -0.0081 (0.038) 0.0139 (0.077) 0.1264 (0.139)

Treatment X num men 20 to 34 yrs 0.035 (0.05) 0.0449 (0.1) 0.2963 (0.182)

Treatment X num women 20 to 34 yrs 0.0127 (0.05) -0.0129 (0.101) -0.1266 (0.183)

Treatment X num men 35 to 54 yrs 0.0664 (0.057) -0.0436 (0.113) 0.0986 (0.205)

Treatment X num women 35 to 54 yrs -0.0072 (0.057) 0.0253 (0.115) 0.0754 (0.208)

Treatment X num men at least 55 yrs -0.0446 (0.07) -0.2913 (0.14) 0.0671 (0.255)

Treatment X num women at least 55 yrs -0.0026 (0.06) 0.0306 (0.119) 0.0851 (0.217)

Baseline Covariates X X X

R2 0.159 0.012 0.029

NTE 6784 6784 6784

Notes: OLS coefficients of household characteristics interacted with treatment on three outcome dimensions: log
consumption (log monthly per capita consumption), schooling (number of missed school days per child), and
health (number of sick days per child). Standard errors in parentheses. Schooling and health sick days / missed
school days measured over 28 days prior to survey. Baseline covariates include the covariates without treatment
interactions, e.g. head age, as well as a constant term.
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Table S3: Feature Importance Estimates: Causal Forest

Log Consumption Schooling Health

Monthly per capita # days missed school # Sick days

(pesos) per child per child

head indigenous 0.319 0.009 0.012

log household income 97 0.230 0.182 0.273

head age 0.123 0.319 0.239

num child 3 to 5 yrs 0.011 0.070 0.165

num child less than 2 yrs 0.017 0.157 0.025

num adults 0.093 0.033 0.030

num child 6 to 10 yrs 0.064 0.019 0.052

num men at least 55 yrs 0.014 0.049 0.006

head agricultural worker 0.017 0.034 0.013

num women 20 to 34 yrs 0.006 0.024 0.030

num boys 11 to 14 yrs 0.010 0.023 0.021

num men 20 to 34 yrs 0.011 0.014 0.038

num girls 11 to 14 yrs 0.011 0.013 0.027

num girls 15 to 19 yrs 0.022 0.008 0.016

num boys 15 to 19 yrs 0.021 0.005 0.020

male head of household 0.003 0.019 0.003

num women 35 to 54 yrs 0.005 0.011 0.009

num men 35 to 54 yrs 0.013 0.005 0.006

head education 0.002 0.002 0.008

num women at least 55 yrs 0.007 0.002 0.005

NTE 6784 6784 6784

Notes : Feature importances as estimated from causal forest estimation of heterogeneous treatment impacts
of PROGRESA on three outcome dimensions: log consumption (log monthly per capita consumption),
schooling (number of missed school days per child), and health (number of sick days per child). Schooling
and health sick days / missed school days measured over 28 days prior to survey. Estimates reflect 3 separate
causal forest estimations for each respective outcome.
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Table S4: Alternative Outcome Specifications

Household Poverty Score

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log Welfare Weights log(γ)

Indigenous -0.174 (-0.227, -0.038) -0.282 (-0.316, 0.05) 0.548 (0.46, 0.608) -0.175 (-0.229, -0.038) -0.192 (-0.253, -0.058) -0.194 (-0.246, -0.056) 0.61 (0.566, 0.651) 0.546 (0.446, 0.604) 0.178 (0.087, 0.378)

log(Income) -0.19 (-0.234, -0.138) -0.192 (-0.264, -0.072) -0.219 (-0.238, -0.166) -0.192 (-0.234, -0.139) -0.194 (-0.241, -0.147) -0.195 (-0.246, -0.149) -0.238 (-0.243, -0.219) -0.219 (-0.239, -0.168) -0.174 (-0.256, -0.137)

Household Size 0.104 (0.085, 0.118) 0.097 (0.069, 0.131) 0.113 (0.096, 0.122) 0.105 (0.084, 0.118) 0.106 (0.084, 0.121) 0.106 (0.087, 0.122) 0.116 (0.11, 0.12) 0.113 (0.097, 0.122) 0.116 (0.091, 0.14)

Head Age -0.016 (-0.02, -0.01) -0.016 (-0.022, -0.009) -0.017 (-0.019, -0.016) -0.016 (-0.02, -0.011) -0.018 (-0.024, -0.012) -0.018 (-0.025, -0.012) -0.02 (-0.02, -0.018) -0.018 (-0.019, -0.016) -0.016 (-0.021, -0.01)

Education -0.727 (-0.952, -0.505) -0.831 (-1.277, -0.415) -0.844 (-1.048, -0.666) -0.731 (-0.956, -0.515) -0.785 (-1.147, -0.578) -0.79 (-1.038, -0.615) -1.012 (-1.289, -0.87) -0.84 (-1.012, -0.683) -0.62 (-0.986, -0.322)

Impact Weights β

Log Consumption 6.07 (4.04, 7.28) 6.08 (4.01, 7.4) 6.68 (4.38, 8.45) 6.69 (4.33, 7.77)

(per capita)

Log Food Consumption 2.92 (-0.28, 5.13)

(per capita)

Log Non-Food Consumption 4.32 (0.39, 5.75)

(per capita)

Linear Consumption 0.02 (0.01, 0.03)

(per capita)

Missed Schooling (per day) -0.48 (-1.33, 0.02) -0.67 (-1.83, 0.72) -0.78 (-1.46, -0.3) -0.48 (-1.38, 0.0) -0.78 (-1.49, -0.33) -0.4 (-1.31, 0.09)

Sickness (per child sick day) -0.05 (-0.51, 0.56) -0.05 (-1.01, 1.12) 0.05 (-0.24, 0.39) -0.06 (-0.58, 0.7) 0.06 (-0.25, 0.47) -0.04 (-0.47, 0.43)

Value Regardless of Impact 1 1 1 1 1 1 1 1 1

Nrank 7767 7767 7767 7767 7767 7767 7767 7767 7767

NTE 6784 6784 6784 6784 6784 6784 6784 6784 6784

Notes : All columns computed using our method, using heterogeneous treatment effects estimated with OLS (see Figure 2). 95% confidence intervals are computed using a two-step Bayesian bootstrap procedure that accounts for uncertainty in both treatment effects and preference parameters.
Dirichlet bootstrap weights are drawn and then treatment effects are estimated using these bootstrapped weights, and welfare and impact weights are estimated using the same weights. Nrank describes the number of observations used in estimating the final ranking, NTE describes the number
of observations used in estimating the heterogeneous treatment effects, which are then projected to the full sample based on covariates.
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Table S5: Alternative Welfare Weight Specifications (1)

Household Poverty Score

(1) (2) (3) (4) (5) (6)

Log Welfare Weights log(γ)

Indigenous -0.174 (-0.227, -0.038) -0.067 (-0.137, 0.065) -0.113 (-0.221, 0.105) -0.104 (-0.146, 0.036) -0.102 (-0.143, -0.002) -0.035 (-0.17, 0.189)

log(Income) -0.19 (-0.234, -0.138) -0.223 (-0.28, -0.14)

Household Size 0.104 (0.085, 0.118) 0.045 (0.034, 0.052)

Head Age -0.016 (-0.02, -0.01) -0.013 (-0.023, -0.005)

Education -0.727 (-0.952, -0.505) -0.53 (-0.694, -0.363)

Impact Weights β

Log Consumption (per capita) 6.07 (4.04, 7.28) 3.04 (1.84, 4.1) 6.25 (3.98, 7.67) 3.52 (2.32, 4.57) 2.6 (1.8, 3.34) 4.35 (2.72, 7.41)

Missed Schooling (per day) -0.48 (-1.33, 0.02) -0.66 (-1.36, -0.19) -1.21 (-2.36, -0.25) -0.42 (-1.18, -0.03) -0.55 (-0.98, -0.24) -0.89 (-2.41, -0.01)

Sickness (per child sick day) -0.05 (-0.51, 0.56) -0.0 (-0.39, 0.39) 0.24 (-0.41, 1.07) -0.09 (-0.42, 0.44) -0.07 (-0.31, 0.23) 0.22 (-0.4, 1.22)

Value Regardless of Impact 1 1 1 1 1 1

Nrank 7767 7767 7767 7767 7767 7767

NTE 6784 6784 6784 6784 6784 6784

Notes : All columns computed using our method, using heterogeneous treatment effects estimated with causal forest (see Figure 2). 95% confidence intervals are computed using a two-step Bayesian bootstrap
procedure that accounts for uncertainty in both treatment effects and preference parameters. Dirichlet bootstrap weights are drawn and then treatment effects are estimated using these bootstrapped weights,
and welfare and impact weights are estimated using the same weights. Nrank describes the number of observations used in estimating the final ranking, NTE describes the number of observations used in
estimating the heterogeneous treatment effects, which are then projected to the full sample based on covariates.
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Table S6: Alternative Welfare Weight Specifications, Continued (2)

Household Poverty Score

(7) (8) (9) (10) (11)

Log Welfare Weights log(γ)

Indigenous -0.148 (-0.213, 0.041) -0.155 (-0.215, -0.048) -0.059 (-0.141, 0.078)

log(Income) -0.219 (-0.277, -0.144) -0.18 (-0.236, -0.127) -0.182 (-0.238, -0.127) -0.184 (-0.242, -0.133) -0.112 (-0.156, -0.077)

Household Size 0.072 (0.057, 0.085) 0.018 (0.01, 0.032)

Head Age -0.001 (-0.004, 0.002)

Education -0.794 (-1.198, -0.512) -0.816 (-1.286, -0.513) -0.461 (-0.656, -0.295) -0.468 (-0.658, -0.357)

Number of Adults -0.093 (-0.149, -0.058)

Number of 0-5 y.o. 0.195 (0.154, 0.221)

Number of 6-16 y.o. 0.067 (0.047, 0.098)

Impact Weights β

Log Consumption (per capita) 5.3 (4.09, 6.24) 5.07 (4.03, 5.9) 6.26 (4.17, 7.66) 4.01 (2.91, 4.75) 2.71 (1.61, 3.93)

Missed Schooling (per day) -1.22 (-2.27, -0.36) -0.78 (-1.86, -0.07) -0.71 (-1.86, 0.01) -0.58 (-1.14, -0.13) -0.6 (-1.04, -0.18)

Sickness (per child sick day) 0.22 (-0.41, 1.1) 0.04 (-0.47, 0.96) 0.03 (-0.52, 1.12) -0.01 (-0.38, 0.5) -0.56 (-0.7, -0.16)

Value Regardless of Impact 1 1 1 1 1

Nrank 7767 7767 7767 7767 7767

NTE 6784 6784 6784 6784 6784

Notes: All columns computed using our method, using heterogeneous treatment effects estimated with causal forest (see Figure 2). 95% confidence intervals are computed using a
two-step Bayesian bootstrap procedure that accounts for uncertainty in both treatment effects and preference parameters. Dirichlet bootstrap weights are drawn and then treatment
effects are estimated using these bootstrapped weights, and welfare and impact weights are estimated using the same weights. Nrank describes the number of observations used in
estimating the final ranking, NTE describes the number of observations used in estimating the heterogeneous treatment effects, which are then projected to the full sample based on
covariates.
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Table S7: Fixed-Parameter Model Estimates

Household Poverty Score

Egalitarian Only Value Only Value Only Value
Consumption Missed School Days Sick Days

Log Welfare Weights log(γ)

Indigenous 0 0.293 (0.254, 0.339) 0.688 (0.571, 0.848) 0.542 (0.469, 0.627)

log(Income) 0 -0.173 (-0.19, -0.155) -0.282 (-0.351, -0.252) -0.222 (-0.255, -0.173)

Household Size 0 0.104 (0.097, 0.109) 0.119 (0.106, 0.141) 0.114 (0.099, 0.124)

Head Age 0 -0.014 (-0.016, -0.011) -0.027 (-0.033, -0.023) -0.018 (-0.021, -0.016)

Education 0 -0.727 (-0.814, -0.617) -1.365 (-1.986, -1.142) -0.837 (-1.042, -0.692)

Impact Weights β

Log Consumption (per capita) 2.69 (2.08, 3.54) 1 0 0

Missed Schooling (per day) -0.68 (-1.36, -0.23) 0 -1 0

Sickness (per child sick day) 0.0 (-0.36, 0.4) 0 0 -1

Value Regardless of Impact 1 1 1 1

Nrank 7767 7767 7767 7767

NTE 6784 6784 6784 6784

Notes: All columns computed using our method, using heterogeneous treatment effects estimated with OLS (see Figure 2). 95% confidence
intervals are computed using a two-step Bayesian bootstrap procedure that accounts for uncertainty in both treatment effects and preference
parameters. Dirichlet bootstrap weights are drawn and then treatment effects are estimated using these bootstrapped weights, and welfare and
impact weights are estimated using the same weights. Nrank describes the number of observations used in estimating the final ranking, NTE
describes the number of observations used in estimating the heterogeneous treatment effects, which are then projected to the full sample based
on covariates. Column 1 presents results with enforced egalitarianism (equal welfare weights) across households. Columns 2-4 present results
allowing priority based only on one outcome, under the assumption that it is valued equally as the value of the program independent of impacts
|βj | = α.
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Table S8: Further Robustness Checks

Household Poverty Score

Full Sample Only Eligible Causal Forest TEs Binary Ranking
(Eligible/Ineligible)

Log Welfare Weights log(γ)

Indigenous -0.174 (-0.227, -0.038) -0.272 (-0.322, -0.115) -0.189 (-0.268, 0.021) 0.101 (0.02, 0.322)

log(Income) -0.19 (-0.234, -0.138) -0.223 (-0.273, -0.175) -0.192 (-0.255, -0.135) -0.085 (-0.161, -0.041)

Household Size 0.104 (0.085, 0.118) 0.126 (0.104, 0.148) 0.097 (0.084, 0.109) 0.051 (0.042, 0.065)

Head Age -0.016 (-0.02, -0.01) -0.022 (-0.025, -0.017) -0.018 (-0.023, -0.013) -0.004 (-0.011, -0.001)

Education -0.727 (-0.952, -0.505) -0.722 (-0.876, -0.355) -0.679 (-0.826, -0.568) -0.547 (-0.663, -0.456)

Impact Weights β

Log Consumption (per capita) 6.07 (4.04, 7.28) 6.92 (4.28, 7.88) 9.41 (6.93, 11.4) 8.63 (6.45, 10.4)

Missed Schooling (per day) -0.48 (-1.33, 0.02) -0.34 (-1.71, 0.25) -0.02 (-1.21, 0.66) -0.49 (-1.99, 0.9)

Sickness (per child sick day) -0.05 (-0.51, 0.56) 0.33 (-0.45, 0.8) 0.26 (-0.45, 0.5) -0.37 (-1.54, 0.16)

Value Regardless of Impact 1 1 1 1

Nrank 7767 6641 7767 7767

NTE 6784 6641 6784 6784

Notes : All columns computed using our method, using heterogeneous treatment effects estimated with OLS (see Figure 2) except where noted. Column
2 presents results using only households determined program-eligible for PROGRESA in both November 1999 and October 1998. Column 3 presents
results using causal forest to estimate heterogeneous treatment effects. Column 4 presents results using a binary {0,1} measure of each household’s
eligibility for PROGRESA as the priority ranking zi; we use causal forest HTE estimates for this model as we encounter non-convergence issues with
OLS (although the OLS model with alternative outcomes specification in Table A4, column 2 is convergent and similar). 95% confidence intervals are
computed using a two-step Bayesian bootstrap procedure that accounts for uncertainty in both treatment effects and preference parameters. Dirichlet
bootstrap weights are drawn and then treatment effects are estimated using these bootstrapped weights, and welfare and impact weights are estimated
using the same weights. Nrank describes the number of observations used in estimating the final ranking, NTE describes the number of observations
used in estimating the heterogeneous treatment effects, which are then projected to the full sample based on covariates.
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Table S9: Preferences for Paternalism in Survey of Mexican Residents

Prompt Likert Average

(0-4)

Some children may require direct support

Nutrition and resources 3.6

Education 3.6

Health 3.6

Externalities

Nutrition and resources 3.6

Education 3.7

Health 3.5

Do not directly help children; trust parents

Nutrition and resources 1.4

Education 1.3

Health 1.4

Nrespondents 429

Notes : Subjective preferences for paternalism was asked of Mexican residents in an
online survey through a series of Likert scale responses to prompts, as detailed in
Section S4. Each cell reports the average response (between 0 to 4), when strongly
disagree is coded as zero and strongly agree as 4. Direct support assessed with
‘Some children may require direct support from the government to ensure that they
X’, where X was ‘are healthy’, ‘regularly attend school’, or ‘are fed adequately’
for the three different outcomes. Likewise, externalities was assessed with prompt,
‘When one child is X, it benefits other members of the community’, for X ‘healthier’,
‘better educated’, or ‘better fed’. Finally, trust parents was assessed with prompt,
‘The government should not directly help children, but should instead trust parents
to do what is best for their children’s X’ for X ‘health’, ‘education’, or ‘nutrition’.
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Table S10: Monte Carlo: Precision by Sample Size

NHTE Nrank MAEγ MAEβ

1000 1000 0.1532 0.2125

1000 5000 0.1279 0.1964

1000 15000 0.1256 0.1952

5000 1000 0.1093 0.1585

5000 5000 0.0672 0.0973

5000 15000 0.0596 0.0867

15000 1000 0.1014 0.1463

15000 5000 0.0490 0.0696

15000 15000 0.0380 0.0556

Notes : Table reports the average mean abso-
lute error (MAE) from Monte Carlo simula-
tions that use our method to infer preferences
from samples of different sizes. The first two
columns indicate the sample size used for
estimating treatment effects and the ranking,
respectively.
Simulation details : We assume the true pol-

icy parameters are γ = [1.08, 0.94], β =
[−0.22, 1.32], inspired by the PROGRESA
application. We assume true outcomes are
given by vij = θ0j+θxjx̃i+(θTj+θTxjx̃i)Ti+
eij , which we estimate via OLS from a sam-
ple of NHTE households. MAE estimates
are averaged over 1000 Monte Carlo draws
and across both components of the γ and β
vectors. Simulation parameters:

Covariates: x̃i
iid∼ N(1, 0.25); xi contains the

first 2 dimensions of x̃i.
Treatment status: Ti∼Binomial with p =

0.5.
Heterogeneous effect: θT = [−0.14,−0.70],
θ0 = [0, 0], θTx0 = [-0.76, 0.08, 0.08, 0.61,
0.77, -0.04, -0.28, 0.12, -0.31, -0.12, -0.35,
0.22, -0.08, 0.28, 0.60, -0.71, 0.17, 0.37, 0.12,
0.35, -0.71, -0.25], θx0 = [-0.16, -0.06, -0.40,
0.02, -0.17, 0.14, 0.70, -0.51, 1.18, -0.33, -0.10,
0.28, 0.24, -0.22, 0.03, 0.02, 0.19, 0.04, -0.02,
0.23, -0.71, 0.60], θTx1 = [0.62, -0.44, 0.54,
-0.78, 0.36, 0.06, 0.48, -1.05, 0.91, 0.19, -0.21,
0.70, -0.13, -0.08, 0.59, -0.25, -0.18, -0.37,
-0.87, 0.14, -0.00, 0.33], θx1 = [-0.39, -0.07,
-0.03, -0.19, -0.70, 0.27, 0.17, 0.05, 0.80, 0.07,
0.59, -0.68, -0.33, 1.08, 0.75, -0.03, -0.93, -
0.03, 0.43, 0.42, 0.30, -0.63]. eij∼N(0, 0.75)
and ranking errors distributed EV 1(0, 1).
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Table S11: Monte Carlo: Attenuation/Misspecification and SIMEX Correction

TE Est. Method KTrue KEst Biasγ Biasβ MAEγ MAEβ

Known 22 22 -0.001 0.006 0.01 0.052

OLS 22 22 0.007 -0.055 0.023 0.157

OLS + SIMEX 22 22 0.006 -0.024 0.025 0.147

Known 5 5 -0.003 0.078 0.055 0.427

OLS 5 5 0.023 -0.158 0.075 0.59

OLS + SIMEX 5 5 0.025 -0.044 0.137 1.18

Known 22 22 -0.001 0.006 0.01 0.052

OLS 22 5 0.016 -0.179 0.05 0.573

OLS + SIMEX 22 5 0.009 -0.024 0.105 1.143

Notes : Table reports the average mean absolute error (MAE) and bias from Monte
Carlo simulations that use our method to infer preferences from samples of different
sizes. The first three columns indicate the first-stage treatment effect estimation
method; the number of covariates in the true heterogeneous effect DGP; and the
number of covariates included in the estimated first-stage model. “Known” is the
setting where true effects are directly used in the second-stage estimation; “OLS”
is our baseline setting, where OLS estimation is used in the first-stage; and “OLS +
SIMEX” is the setting where SIMEX adjustment is used on the first-stage estimates
(Cook and Stefanski, 1994). For more detail on SIMEX, see Section S5.2.
Simulation details: We assume the true policy parameters are γ = [1.08, 0.94],
β = [−0.22, 1.32], inspired by the PROGRESA application. We assume true
outcomes are given by vij = θ0j +θxjx̃i+(θTj +θTxjx̃i)Ti+eij , which we estimate
via OLS from a sample of NHTE households. Nrank = NHTE = 7500 in all settings.
MAE and bias estimates are averaged over 50 Monte Carlo draws and across both
components of the γ and β vectors. Simulation parameters:
Treatment status: Ti∼Binomial with p = 0.5.
Covariates are drawn from simulated normal distributions with means and variances

to match the covariates from our actual data, with simulated heterogeneous effects
that are set to the estimated corresponding OLS point estimate effects for the
respective covariate interaction terms in our application. eij∼N(0, 0.75) and ranking
errors distributed EV 1(0, 1).
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Table S12: PROGRESA Estimates with SIMEX Measurement Error Correction

Household Poverty Score

Baseline With SIMEX Adjustment

Log Welfare Weights log(γ)

Indigenous -0.174 (-0.227, -0.038) -0.252 (-0.381, -0.069)

log(Income) -0.19 (-0.234, -0.138) -0.175 (-0.229, -0.101)

Household Size 0.104 (0.085, 0.118) 0.095 (0.07, 0.109)

Head Age -0.016 (-0.02, -0.01) -0.014 (-0.024, -0.005)

Education -0.727 (-0.952, -0.505) -0.682 (-0.936, -0.399)

Impact Weights β

Log Consumption (per capita) 6.07 (4.04, 7.28) 7.38 (4.22, 10.24)

Missed Schooling (per day) -0.48 (-1.33, 0.02) -0.55 (-1.88, 0.08)

Sickness (per child sick day) -0.05 (-0.51, 0.56) -0.15 (-0.81, 0.77)

Value Regardless of Impact 1 1

Nrank 7767 7767

NTE 6784 6784

Notes : All columns computed using our method, using heterogeneous treatment effects estimated
with causal forest (see Figure 2). 95% confidence intervals are computed using a two-step Bayesian
bootstrap procedure that accounts for uncertainty in both treatment effects and preference
parameters. Dirichlet bootstrap weights are drawn and then treatment effects are estimated
using these bootstrapped weights, and welfare and impact weights are estimated using the same
weights. Nrank describes the number of observations used in estimating the final ranking, NTE
describes the number of observations used in estimating the heterogeneous treatment effects,
which are then projected to the full sample based on covariates. SIMEX adjustment procedure is
applied to estimate second column figures, in order to correct for measurement error in first-stage
estimates (Cook and Stefanski, 1994; Chilet, 2017). For more details on the SIMEX procedure,
see Section S5.2.
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Table S13: What Values are Consistent with the PROGRESA Decision Rule?
(with Causal Forest HTE Estimates)

Household Poverty Score 1999

Decision Rule Implied Preferences

(Prioritization) Welfare Weights

Welfare Weights log(γ)

Indigenous 0.606 (0.581, 0.634) -0.189 (-0.268, 0.021)

log(Income) -0.237 (-0.252, -0.223) -0.192 (-0.255, -0.135)

Household Size 0.116 (0.112, 0.119) 0.097 (0.084, 0.109)

Household Head Age -0.02 (-0.021, -0.018) -0.018 (-0.023, -0.013)

Education (Middle school or above) -1.007 (-1.263, -0.85) -0.679 (-0.826, -0.568)

Impact Weights

Log consumption (per capita) β1 9.41 (6.93, 11.4)

Missed Schooling (per day) β2 -0.02 (-1.21, 0.66)

Sickness (per child sick day) β3 0.26 (-0.45, 0.5)

Value Regardless of Impact α 1

Nrank 7767 7767

NTE . 6784

Hypothesis Tests p-value

Egalitarian γ ≡ 1 1.01e-56

Not Paternalistic β ≡ 0 8.37e-11

Egalitarian and Not Paternalistic γ ≡ 1, β ≡ 0 2.15e-90

Notes: ‘Decision Rule’ column is computed using our method, without treatment effects included in the estimation. ‘Implied
Preferences’ column is calculated using our method, using causal forests to estimate heterogeneous treatment effects (see
also Figure S3). 95% confidence intervals, in parentheses, are computed using a two-step Bayesian bootstrap procedure that
accounts for uncertainty in both treatment effects and preference parameters. Dirichlet bootstrap weights are drawn and
then treatment effects are estimated using these bootstrapped weights, and welfare and impact weights are estimated using
the same weights. Nrank is the number of observations used in estimating the final ranking, NTE describes the number of
observations used in estimating the heterogeneous treatment effects, which are then projected to the full sample based on
covariates.
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Table S14: Assessing Decision Rules
(with Causal Forest HTE Estimates)

(1) (2) (3)

Implied Preferences (Estimated) Stated Preferences

1999 Pov. Score 2003 Pov. Score (Resident survey)

Welfare Weights log(γ)

Indigenous -0.189 (-0.268, 0.021) 0.055 (0.017, 0.188) 0.065 (0.057, 0.072)

log(Income) -0.192 (-0.255, -0.135) -0.07 (-0.113, -0.039) -0.071 (-0.257, 0.116)

Household Size 0.097 (0.084, 0.109) 0.085 (0.078, 0.094) 0.015 (-0.018, 0.049)

Household Head Age -0.018 (-0.023, -0.013) -0.003 (-0.006, -0.001) 0.004 (0.002, 0.005)

Educated -0.679 (-0.826, -0.568) -0.457 (-0.556, -0.386) -0.065 (-0.099, -0.03)

Impact Weights

Log Consumption (per capita) β1 9.41 (6.93, 11.4) 3.16 (2.33, 3.57) 4.37 (2.99, 5.75)†
Missed Schooling (per day) β2 -0.02 (-1.21, 0.66) 0.18 (-0.34, 0.39) -1.11 (-1.6, -0.62)†
Sickness (per child sick day) β3 0.26 (-0.45, 0.5) 0.42 (0.13, 0.48) -0.69 (-1.03, -0.35)†
Value Regardless of Impact α 1 1 .

Nrank 7767 7767 .

NTE 6784 6784 .

Nrespondents . . 421*

Notes : Columns 1-2 are estimated using our method, using causal forests to estimate heterogeneous treatment effects.
Column 3 indicates stated preferences estimated on a survey of Mexican residents; to reduce the impact of outliers we
report the median response (for details of this survey, see Appendix S4). † Survey weights scaled to match the scale
of estimated impact weights since we did not estimate the scale of idiosyncratic noise in the survey. 95% confidence
intervals are reported in parentheses. ‘Educated’ defined as a household head with a middle school education or
above. In the first two columns, confidence intervals are computed using a two-step Bayesian bootstrap procedure
that accounts for uncertainty in both treatment effects and preference parameters: dirichlet bootstrap weights are
drawn and then treatment effects are estimated using these bootstrapped weights, and welfare and impact weights are
estimated using the same weights. Nrank describes the number of observations used in estimating the final ranking,
NTE describes the number of observations used in estimating the heterogeneous treatment effects, which are then
projected to the full sample based on covariates. *: The number of survey respondents differs for different parameters
(ranging between 411 and 421), due to incomplete responses. Confidence intervals in column 3 are computed using
standard errors from a standard bootstrap over all individuals, with missing values dropped.
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Table S15: Impact Weights in Survey of Mexican Residents

Outcome Private Value Social Value Resulting Parameter Nrespondents

median b̃ij median bij median βj

(unscaled) (unscaled) (unscaled)

Log Consumption 735.43 (29.64) 994.23 (65.38) 245.65 (39.60) 411

(transfer pesos per unit)

Education -316.67 (25.39) -425.00 (24.39) -62.50 (14.02) 412

(transfer pesos per missed day of school)

Health -375.00 (27.26) -450.00 (21.76) -38.91 (9.81) 424

(transfer pesos per day of sickness)

Notes: Preferences derived from survey of Mexican residents, as described in Appendix S4. Bootstrapped standard errors in
parentheses.
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Table S16: Designing Decision Rules
(with Causal Forest HTE Estimates)

(1) (2) (3) (4) (5) (6)

HH Poverty Resident Equal Welfare Policy only values impact on:

Score Preferences Weights Consumption Education Health

Panel A: Preferences

Welfare Weights γ Estimated From survey Unity Estimated Estimated Estimated

Impact Weights β Estimated From survey Estimated Only consumption Only education Only health

Panel B: Implied decision rule (priority over covariates, in logs)

Indigenous 0.606 1.699 1.566 1.871 -0.367 3.144

log(Income) -0.237 -0.291 -0.176 -0.343 1.003 -0.232

Household Size 0.116 0.047 0.034 0.137 -0.177 0.123

Household Head Age -0.02 -0.002 -0.008 -0.024 -0.12 -0.13

Education -1.007 -0.086 0.055 -0.846 -0.088 -0.683

Panel C: Counterfactual outcomes (monthly)

Log Consumption per capita (pesos) 4.802 4.812 4.813 4.812 4.796 4.796

Missed school (days/child) 0.172 0.168 0.170 0.170 0.158 0.175

Sickness (sick days/child) 0.640 0.629 0.638 0.637 0.646 0.610

Model Log Likelihood -60945 -61944 -62286 -61402 -61514 -61534

Nrank 7767 7767 7767 7767 7767 7767

Notes: Table shows the distributional and outcome effects of designing decision rules using our framework. Panel A indicates which weights are
used to prioritize households. Column 1 uses the ranking assigned by PROGRESA. Column 2 uses preferences elicited in a survey we conducted of
Mexican residents. For the survey column, we set α = 1 and scale survey impact weights to have the same average magnitude as estimated impact
weights. Survey weight model likelihood computed using same constant term. Column 3 projects the ranking as though the policy assigned the
same welfare weight to all households, so preference results from differences in outcomes. Columns 4-6 indicate what would have happened if the
policy used the estimated weights over households but only valued about impacts on education/health/consumption, with α = 0. Panel B shows
the distributional effects of each column’s preferences, by estimating the implied priority ranking across households. Panel C shows each policy’s
expected average outcomes, calculated using estimates of heterogeneous treatment effects.
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Table S17: Alternative Outcome Specifications
(with Causal Forest HTE Estimates)

Household Poverty Score

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log Welfare Weights log(γ)

Indigenous -0.189 (-0.268, 0.021) -0.193 (-0.264, -0.018) 0.588 (0.511, 0.611) -0.179 (-0.262, 0.037) -0.189 (-0.282, 0.022) -0.18 (-0.267, 0.034) 0.602 (0.553, 0.626) 0.591 (0.52, 0.618) 0.224 (0.198, 0.282)

log(Income) -0.192 (-0.255, -0.135) -0.198 (-0.276, -0.144) -0.241 (-0.251, -0.208) -0.189 (-0.275, -0.136) -0.192 (-0.276, -0.135) -0.189 (-0.279, -0.137) -0.237 (-0.253, -0.219) -0.24 (-0.255, -0.223) -0.18 (-0.235, -0.137)

Household Size 0.097 (0.084, 0.109) 0.095 (0.082, 0.105) 0.115 (0.107, 0.119) 0.095 (0.081, 0.109) 0.097 (0.082, 0.107) 0.095 (0.081, 0.107) 0.116 (0.11, 0.121) 0.115 (0.112, 0.118) 0.105 (0.092, 0.114)

Head Age -0.018 (-0.023, -0.013) -0.018 (-0.023, -0.013) -0.018 (-0.02, -0.015) -0.018 (-0.022, -0.013) -0.018 (-0.023, -0.014) -0.018 (-0.023, -0.013) -0.02 (-0.02, -0.018) -0.018 (-0.02, -0.015) -0.018 (-0.021, -0.012)

Education -0.679 (-0.826, -0.568) -0.691 (-0.784, -0.565) -0.978 (-1.157, -0.829) -0.661 (-0.809, -0.545) -0.68 (-0.802, -0.573) -0.662 (-0.796, -0.568) -1.002 (-1.222, -0.853) -0.984 (-1.18, -0.844) -0.708 (-0.827, -0.612)

Impact Weights β

Log Consumption 9.41 (6.93, 11.4) 9.14 (6.74, 11.03) 9.42 (6.85, 12.14) 9.18 (6.83, 12.14)

(per capita)

Log Food Consumption 4.62 (2.35, 6.77)

(per capita)

Log Non-Food Consumption 5.77 (3.34, 6.94)

(per capita)

Linear Consumption 0.04 (0.03, 0.05)

(per capita)

Missed Schooling (per day) -0.02 (-1.21, 0.66) -0.35 (-1.32, 0.23) -0.53 (-1.68, 0.47) -0.06 (-1.23, 0.56) -0.53 (-1.67, 0.47) 0.18 (-0.9, 0.81)

Sickness (per child sick day) 0.26 (-0.45, 0.5) 0.25 (-0.46, 0.47) -0.05 (-0.53, 0.54) 0.26 (-0.41, 0.48) -0.06 (-0.55, 0.54) 0.09 (-0.41, 0.38)

Value Regardless of Impact 1 1 1 1 1 1 1 1 1

Nrank 7767 7767 7767 7767 7767 7767 7767 7767 7767

NTE 6784 6784 6784 6784 6784 6784 6784 6784 6784

Notes: All columns computed using our method, using heterogeneous treatment effects estimated with causal forest (see Figure S3). Confidence intervals are computed using a two-step Bayesian bootstrap procedure that accounts for uncertainty in both treatment effects and preference
parameters. 95% confidence intervals are computed using a two-step Bayesian bootstrap procedure that accounts for uncertainty in both treatment effects and preference parameters. Dirichlet bootstrap weights are drawn and then treatment effects are estimated using these bootstrapped
weights, and welfare and impact weights are estimated using the same weights. Nrank describes the number of observations used in estimating the final ranking, NTE describes the number of observations used in estimating the heterogeneous treatment effects, which are then projected to the
full sample based on covariates.
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Table S18: Alternative Welfare Weight Specifications (1)
(with Causal Forest HTE Estimates)

Household Poverty Score

(1) (2) (3) (4) (5) (6)

Log Welfare Weights log(γ)

Indigenous -0.189 (-0.268, 0.021) -0.11 (-0.153, 0.069) -0.096 (-0.173, 0.128) -0.127 (-0.17, 0.059) -0.154 (-0.195, 0.011) -0.081 (-0.127, 0.133)

log(Income) -0.192 (-0.255, -0.135) -0.189 (-0.269, -0.122)

Household Size 0.097 (0.084, 0.109) 0.041 (0.035, 0.047)

Head Age -0.018 (-0.023, -0.013) -0.008 (-0.014, -0.004)

Education -0.679 (-0.826, -0.568) -0.468 (-0.536, -0.4)

Impact Weights β

Log Consumption (per capita) 9.41 (6.91, 11.48) 4.74 (3.36, 5.07) 7.52 (5.28, 9.52) 4.32 (3.25, 4.5) 5.69 (4.08, 6.76) 5.13 (3.76, 5.54)

Missed Schooling (per day) 0.26 (-0.44, 0.47) 0.16 (-0.25, 0.28) 0.39 (-0.26, 0.7) 0.03 (-0.28, 0.17) 0.3 (-0.2, 0.57) 0.14 (-0.29, 0.3)

Sickness (per child sick day) -0.02 (-1.23, 0.65) 0.02 (-0.71, 0.41) -0.22 (-1.42, 0.65) -0.18 (-0.79, 0.22) 0.3 (-0.72, 0.65) -0.08 (-0.81, 0.35)

Value Regardless of Impact 1 1 1 1 1 1

Nrank 7767 7767 7767 7767 7767 7767

NTE 6784 6784 6784 6784 6784 6784

Notes: All columns computed using our method, using heterogeneous treatment effects estimated with causal forest (see Figure S3). 95% confidence intervals are computed using a two-step Bayesian
bootstrap procedure that accounts for uncertainty in both treatment effects and preference parameters. Dirichlet bootstrap weights are drawn and then treatment effects are estimated using these
bootstrapped weights, and welfare and impact weights are estimated using the same weights. Nrank describes the number of observations used in estimating the final ranking, NTE describes the number of
observations used in estimating the heterogeneous treatment effects, which are then projected to the full sample based on covariates.

40



Table S19: Alternative Welfare Weight Specifications, Continued (2)
(with Causal Forest HTE Estimates)

Household Poverty Score

(7) (8) (9) (10) (11)

Log Welfare Weights log(γ)

Indigenous -0.118 (-0.187, 0.098) -0.152 (-0.228, 0.029) -0.033 (-0.064, 0.103)

log(Income) -0.199 (-0.268, -0.13) -0.159 (-0.22, -0.099) -0.146 (-0.225, -0.093) -0.141 (-0.212, -0.099) -0.122 (-0.16, -0.09)

Household Size 0.057 (0.05, 0.065) 0.029 (0.025, 0.04)

Head Age -0.003 (-0.004, -0.001)

Education -0.664 (-0.823, -0.539) -0.638 (-0.809, -0.515) -0.397 (-0.471, -0.345) -0.518 (-0.586, -0.463)

Number of Adults -0.118 (-0.146, -0.102)

Number of 0-5 y.o. 0.133 (0.115, 0.142)

Number of 6-16 y.o. 0.097 (0.09, 0.105)

Impact Weights β

Log Consumption (per capita) 6.7 (5.41, 8.05) 6.29 (5.22, 7.49) 7.27 (5.2, 8.83) 5.44 (4.07, 6.18) 3.24 (2.11, 3.57)

Missed Schooling (per day) -0.38 (-1.41, 0.66) -0.46 (-1.39, 0.52) -0.26 (-1.41, 0.53) -0.46 (-1.3, 0.23) -0.37 (-1.04, 0.24)

Sickness (per child sick day) 0.36 (-0.29, 0.69) 0.26 (-0.25, 0.58) 0.29 (-0.28, 0.57) 0.1 (-0.29, 0.29) -0.3 (-0.53, -0.07)

Value Regardless of Impact 1 1 1 1 1

Nrank 7767 7767 7767 7767 7767

NTE 6784 6784 6784 6784 6784

Notes: All columns computed using our method, using heterogeneous treatment effects estimated with causal forest (see Figure S3). 95% confidence intervals are computed using a
two-step Bayesian bootstrap procedure that accounts for uncertainty in both treatment effects and preference parameters. Dirichlet bootstrap weights are drawn and then treatment
effects are estimated using these bootstrapped weights, and welfare and impact weights are estimated using the same weights. Nrank describes the number of observations used in
estimating the final ranking, NTE describes the number of observations used in estimating the heterogeneous treatment effects, which are then projected to the full sample based on
covariates.
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Table S20: Fixed-Parameter Model Estimates
(with Causal Forest HTE Estimates)

Household Poverty Score

Egalitarian Only Value Only Value Only Value
Consumption Missed School Days Sick Days

Log Welfare Weights log(γ)

Indigenous 0 0.368 (0.344, 0.417) 0.582 (0.542, 0.652) 0.599 (0.545, 0.677)

log(Income) 0 -0.185 (-0.202, -0.172) -0.25 (-0.275, -0.221) -0.282 (-0.346, -0.244)

Household Size 0 0.103 (0.099, 0.106) 0.115 (0.112, 0.12) 0.12 (0.113, 0.13)

Head Age 0 -0.016 (-0.017, -0.014) -0.017 (-0.02, -0.016) -0.022 (-0.025, -0.018)

Education 0 -0.776 (-0.828, -0.707) -0.987 (-1.14, -0.854) -1.089 (-1.3, -0.953)

Impact Weights β

Log Consumption (per capita) 3.86 (3.08, 4.75) 1 0 0

Missed Schooling (per day) -0.13 (-0.82, 0.36) 0 -1 0

Sickness (per child sick day) 0.13 (-0.25, 0.29) 0 0 -1

Value Regardless of Impact 1 1 1 1

Nrank 7767 7767 7767 7767

NTE 6784 6784 6784 6784

Notes: All columns computed using our method, using heterogeneous treatment effects estimated with causal forest (see Figure S3). 95%
confidence intervals are computed using a two-step Bayesian bootstrap procedure that accounts for uncertainty in both treatment effects and
preference parameters. Dirichlet bootstrap weights are drawn and then treatment effects are estimated using these bootstrapped weights, and
welfare and impact weights are estimated using the same weights. Nrank describes the number of observations used in estimating the final
ranking, NTE describes the number of observations used in estimating the heterogeneous treatment effects, which are then projected to the
full sample based on covariates. Column 1 presents results with enforced egalitarianism (equal welfare weights) across households. Columns
2-4 present results allowing priority based only on one outcome, under the assumption that it is valued equally as the value of the program
independent of impacts |βj | = α.
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S7 Additional Figures
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Figure S1: Binscatter Plots of Treatment Effect Heterogeneity: OLS

(a) Log Consumption Treatment Effects (b) Schooling Treatment Effects (c) Health Treatment Effects

Notes : Binscatter plots of treatment effects from OLS over five covariates: household size; household head education; household head indigenous status;

household head age; and log household income in the pre-period of 1997. Figures shown for treatment effects over per-person monthly consumption,

number of sick days per child, and number of missed school days per child. Treatment effects shown are residualized against remaining covariates in the

regression (the other graphed covariates).
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Figure S2: Binscatter Plots of Treatment Effect Heterogeneity: Causal Forest

(a) Log Consumption Treatment Effects (b) Schooling Treatment Effects (c) Health Treatment Effects

Notes: Binscatter plots of treatment effects from causal forest over a selected group of five covariates: household size; household head education;

household head indigenous status; household head age; and log household income in the pre-period of 1997. Figures shown for treatment effects over

per-person monthly consumption, number of sick days per child, and number of missed school days per child. Treatment effects shown are residualized

against remaining covariates in the regression (the other graphed covariates).
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Figure S3: Distribution of Estimated Treatment Effects (Casual Forest)
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Notes: Joint and marginal distributions of estimated treatment effects of PROGRESA conditional
cash transfer on schooling, health, and consumption, estimated using causal forest (Wager and Athey, 2018).
Schooling treatment effects are measured over the number of missed school days per school-age child in a
given household. Health treatment effects are measured over the number of sick days per young (0-5 years
old) child in a given household. Consumption treatment effects are measured over per-person consumption in
pesos in a given household. Marginal distributions for consumption and health treatment effects are shown
over the y and x axes, respectively, and are binned together in the center figure. Average schooling treatment
effects in each consumption-health-treatment-effect bin is shown by the fill color of the bin, according to
the index of the legend on the right. The marginal distribution of schooling treatment effects is shown in
parallel to this legend. Note that missed school days and sick days are inferred to be “bads”, according to
our estimated weights, and so higher negative values for these treatment effects are associated with higher
social utility. Note also that we drop households without children in the relevant age range for health and
schooling treatment effects; the above graphs show only TEs for households for which these TEs are defined.
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Figure S4: Welfare Weight Survey Question Example

Notes: Respondents saw a version of this question translated into Spanish.
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Figure S5: Impact Weight Survey Question Example

Notes: Respondents saw a version of this question translated into Spanish.
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Figure S6: SIMEX Adjustment Illustration: Application to PROGRESA Estimates

(a) Indigenous (b) Log(Income) (c) Household Head Age (d) Household Size

(e) Education (f) Log(Consumption) (g) Health (h) School

Notes: Plots of SIMEX extrapolation function over different ζ values. Solid green line represents averages of estimated parameters at given ζ, dotted

blue line represents projected fθ(ζ) function values. Dotted horizontal line represents baseline estimates using OLS treatment effects. Y axis scaled to

log(γ) for welfare weights and β for impact weights. See Section S5.2 for more details on SIMEX estimation procedure.
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